First, simplify the integrand:
3−x−(x2−9)=3−x−x2+9=12−x−x2. Now, integrate the simplified integrand with respect to x: ∫(12−x−x2)dx=12x−2x2−3x3+C. Next, evaluate the definite integral from -4 to 3:
∫−43(12−x−x2)dx=[12x−2x2−3x3]−43 =(12(3)−2(3)2−3(3)3)−(12(−4)−2(−4)2−3(−4)3) =(36−29−327)−(−48−216−3−64) =(36−29−9)−(−48−8+364) =(27−29)−(−56+364) =27−29+56−364 =83−29−364 =83−627−6128 =83−6155 =6498−6155 =6343. Finally, subtract 29π from the result: A(R)=6343−29π =6343−627π =6343−27π.