The problem asks to determine the convergence or divergence of four series using the Limit Comparison Test. 1. $\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n + 3}$

AnalysisSeriesConvergenceDivergenceLimit Comparison Test
2025/5/27

1. Problem Description

The problem asks to determine the convergence or divergence of four series using the Limit Comparison Test.

1. $\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n + 3}$

2. $\sum_{n=1}^{\infty} \frac{3n + 1}{n^3 - 4}$

3. $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$

4. $\sum_{n=1}^{\infty} \frac{\sqrt{2n+1}}{n^2}$

2. Solution Steps

Problem 1: n=1nn2+2n+3\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n + 3}
We compare this series with n=11n\sum_{n=1}^{\infty} \frac{1}{n}, which is a divergent harmonic series. Let an=nn2+2n+3a_n = \frac{n}{n^2 + 2n + 3} and bn=1nb_n = \frac{1}{n}.
limnanbn=limnnn2+2n+31n=limnn2n2+2n+3=limn11+2n+3n2=1\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\frac{n}{n^2 + 2n + 3}}{\frac{1}{n}} = \lim_{n\to\infty} \frac{n^2}{n^2 + 2n + 3} = \lim_{n\to\infty} \frac{1}{1 + \frac{2}{n} + \frac{3}{n^2}} = 1
Since the limit is a positive finite number (1), and n=11n\sum_{n=1}^{\infty} \frac{1}{n} diverges, then n=1nn2+2n+3\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n + 3} also diverges.
Problem 2: n=13n+1n34\sum_{n=1}^{\infty} \frac{3n + 1}{n^3 - 4}
We compare this series with n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2}, which is a convergent p-series with p=2>1p = 2 > 1. Let an=3n+1n34a_n = \frac{3n + 1}{n^3 - 4} and bn=1n2b_n = \frac{1}{n^2}.
limnanbn=limn3n+1n341n2=limn3n3+n2n34=limn3+1n14n3=3\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\frac{3n + 1}{n^3 - 4}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{3n^3 + n^2}{n^3 - 4} = \lim_{n\to\infty} \frac{3 + \frac{1}{n}}{1 - \frac{4}{n^3}} = 3
Since the limit is a positive finite number (3), and n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2} converges, then n=13n+1n34\sum_{n=1}^{\infty} \frac{3n + 1}{n^3 - 4} also converges.
Problem 3: n=11nn+1\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}
We compare this series with n=11nn=n=11n3/2\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}, which is a convergent p-series with p=32>1p = \frac{3}{2} > 1. Let an=1nn+1a_n = \frac{1}{n\sqrt{n+1}} and bn=1nn=1n3/2b_n = \frac{1}{n\sqrt{n}} = \frac{1}{n^{3/2}}.
limnanbn=limn1nn+11nn=limnnnnn+1=limnnn+1=limnnn+1=limn11+1n=1=1\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\frac{1}{n\sqrt{n+1}}}{\frac{1}{n\sqrt{n}}} = \lim_{n\to\infty} \frac{n\sqrt{n}}{n\sqrt{n+1}} = \lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{n+1}} = \lim_{n\to\infty} \sqrt{\frac{n}{n+1}} = \lim_{n\to\infty} \sqrt{\frac{1}{1 + \frac{1}{n}}} = \sqrt{1} = 1
Since the limit is a positive finite number (1), and n=11n3/2\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} converges, then n=11nn+1\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}} also converges.
Problem 4: n=12n+1n2\sum_{n=1}^{\infty} \frac{\sqrt{2n+1}}{n^2}
We compare this series with n=1nn2=n=11n3/2\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}, which is a convergent p-series with p=32>1p = \frac{3}{2} > 1. Let an=2n+1n2a_n = \frac{\sqrt{2n+1}}{n^2} and bn=nn2=1n3/2b_n = \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}}.
limnanbn=limn2n+1n2nn2=limn2n+1n=limn2n+1n=limn2+1n=2\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\frac{\sqrt{2n+1}}{n^2}}{\frac{\sqrt{n}}{n^2}} = \lim_{n\to\infty} \frac{\sqrt{2n+1}}{\sqrt{n}} = \lim_{n\to\infty} \sqrt{\frac{2n+1}{n}} = \lim_{n\to\infty} \sqrt{2 + \frac{1}{n}} = \sqrt{2}
Since the limit is a positive finite number (2\sqrt{2}), and n=11n3/2\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} converges, then n=12n+1n2\sum_{n=1}^{\infty} \frac{\sqrt{2n+1}}{n^2} also converges.

3. Final Answer

1. The series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n + 3}$ diverges.

2. The series $\sum_{n=1}^{\infty} \frac{3n + 1}{n^3 - 4}$ converges.

3. The series $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$ converges.

4. The series $\sum_{n=1}^{\infty} \frac{\sqrt{2n+1}}{n^2}$ converges.

Related problems in "Analysis"

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29

We are asked to evaluate the following limit: $\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 + 4x - 5}$.

LimitsCalculusPolynomial FactorizationIndeterminate Forms
2025/5/29

We need to find the limit of the expression $\frac{2x^3 - 2x + 1}{x^2 + 4x - 5}$ as $x$ approaches $...

LimitsCalculusRational FunctionsPolynomial DivisionOne-sided Limits
2025/5/29

The problem is to solve the equation $\sin(x - \frac{\pi}{2}) = -\frac{\sqrt{2}}{2}$ for $x$.

TrigonometryTrigonometric EquationsSine FunctionPeriodicity
2025/5/29

We are asked to evaluate the limit: $\lim_{x \to +\infty} \frac{(2x-1)^3(x+2)^5}{x^8-1}$

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the function $\frac{(2x-1)^3(x+2)^5}{x^8-1}$ as $x$ approaches inf...

LimitsFunctionsAsymptotic Analysis
2025/5/29