First, we simplify the integrand:
3−x−(x2−a)=3−x−x2+a=−x2−x+(3+a). Then we calculate the definite integral:
∫−43(−x2−x+(3+a))dx=[−3x3−2x2+(3+a)x]−43 =(−333−232+(3+a)3)−(−3(−4)3−2(−4)2+(3+a)(−4)) =(−327−29+9+3a)−(364−216−12−4a) =(−9−29+9+3a)−(364−8−12−4a) =(−29+3a)−(364−20−4a) =−29+3a−364+20+4a =7a+20−29−364=7a+6120−27−128=7a+6−35. Now, we subtract 2π32=29π from the result: 7a−635−29π=7a−635−627π=7a−635+27π.