The problem asks to find the inverse function $f^{-1}(y)$ of the given function $f(x) = 2(x+2) + 5$.

AlgebraInverse FunctionsLinear Functions
2025/3/26

1. Problem Description

The problem asks to find the inverse function f1(y)f^{-1}(y) of the given function f(x)=2(x+2)+5f(x) = 2(x+2) + 5.

2. Solution Steps

To find the inverse function f1(y)f^{-1}(y), we first replace f(x)f(x) with yy.
y=2(x+2)+5y = 2(x+2) + 5
Next, we solve for xx in terms of yy.
y=2(x+2)+5y = 2(x+2) + 5
y=2x+4+5y = 2x + 4 + 5
y=2x+9y = 2x + 9
y9=2xy - 9 = 2x
x=y92x = \frac{y - 9}{2}
Finally, we replace xx with f1(y)f^{-1}(y).
f1(y)=y92f^{-1}(y) = \frac{y - 9}{2}

3. Final Answer

f1(y)=y92f^{-1}(y) = \frac{y - 9}{2}