First, we rewrite the equation in the standard quadratic form ax2+bx+c=0: 10x2=−19x+15 10x2+19x−15=0 Now, we can solve for x using the quadratic formula: x=2a−b±b2−4ac where a=10, b=19, and c=−15. Plugging in the values, we have:
x=2(10)−19±192−4(10)(−15) x=20−19±361+600 x=20−19±961 x=20−19±31 So we have two possible solutions:
x1=20−19+31=2012=53 x2=20−19−31=20−50=−25