Problem 1: x2−y2=25 to cylindrical coordinates. In cylindrical coordinates, we have the following relationships:
x=rcos(θ) y=rsin(θ) Substituting these into the equation, we get:
(rcos(θ))2−(rsin(θ))2=25 r2cos2(θ)−r2sin2(θ)=25 r2(cos2(θ)−sin2(θ))=25 r2cos(2θ)=25 Problem 2: 2x2+2y2−4z2=0 to spherical coordinates. In spherical coordinates, we have the following relationships:
x=ρsin(ϕ)cos(θ) y=ρsin(ϕ)sin(θ) z=ρcos(ϕ) Substituting these into the equation, we get:
2(ρsin(ϕ)cos(θ))2+2(ρsin(ϕ)sin(θ))2−4(ρcos(ϕ))2=0 2ρ2sin2(ϕ)cos2(θ)+2ρ2sin2(ϕ)sin2(θ)−4ρ2cos2(ϕ)=0 2ρ2sin2(ϕ)(cos2(θ)+sin2(θ))−4ρ2cos2(ϕ)=0 2ρ2sin2(ϕ)(1)−4ρ2cos2(ϕ)=0 2ρ2sin2(ϕ)=4ρ2cos2(ϕ) 2sin2(ϕ)=4cos2(ϕ) sin2(ϕ)=2cos2(ϕ) cos2(ϕ)sin2(ϕ)=2 tan2(ϕ)=2 tan(ϕ)=2 ϕ=arctan(2) Problem 3: x2+y2=9 to spherical coordinates. In spherical coordinates, we have:
x=ρsin(ϕ)cos(θ) y=ρsin(ϕ)sin(θ) z=ρcos(ϕ) Substituting into the equation, we get:
(ρsin(ϕ)cos(θ))2+(ρsin(ϕ)sin(θ))2=9 ρ2sin2(ϕ)cos2(θ)+ρ2sin2(ϕ)sin2(θ)=9 ρ2sin2(ϕ)(cos2(θ)+sin2(θ))=9 ρ2sin2(ϕ)(1)=9 ρ2sin2(ϕ)=9