We have three problems: 1. Convert $x^2 - y^2 = 25$ to cylindrical coordinates.

GeometryCoordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Conversion
2025/6/3

1. Problem Description

We have three problems:

1. Convert $x^2 - y^2 = 25$ to cylindrical coordinates.

2. Convert $2x^2 + 2y^2 - 4z^2 = 0$ to spherical coordinates.

3. Convert $x^2 + y^2 = 9$ to spherical coordinates.

2. Solution Steps

Problem 1: x2y2=25x^2 - y^2 = 25 to cylindrical coordinates.
In cylindrical coordinates, we have the following relationships:
x=rcos(θ)x = r \cos(\theta)
y=rsin(θ)y = r \sin(\theta)
z=zz = z
Substituting these into the equation, we get:
(rcos(θ))2(rsin(θ))2=25(r \cos(\theta))^2 - (r \sin(\theta))^2 = 25
r2cos2(θ)r2sin2(θ)=25r^2 \cos^2(\theta) - r^2 \sin^2(\theta) = 25
r2(cos2(θ)sin2(θ))=25r^2 (\cos^2(\theta) - \sin^2(\theta)) = 25
r2cos(2θ)=25r^2 \cos(2\theta) = 25
Problem 2: 2x2+2y24z2=02x^2 + 2y^2 - 4z^2 = 0 to spherical coordinates.
In spherical coordinates, we have the following relationships:
x=ρsin(ϕ)cos(θ)x = \rho \sin(\phi) \cos(\theta)
y=ρsin(ϕ)sin(θ)y = \rho \sin(\phi) \sin(\theta)
z=ρcos(ϕ)z = \rho \cos(\phi)
Substituting these into the equation, we get:
2(ρsin(ϕ)cos(θ))2+2(ρsin(ϕ)sin(θ))24(ρcos(ϕ))2=02(\rho \sin(\phi) \cos(\theta))^2 + 2(\rho \sin(\phi) \sin(\theta))^2 - 4(\rho \cos(\phi))^2 = 0
2ρ2sin2(ϕ)cos2(θ)+2ρ2sin2(ϕ)sin2(θ)4ρ2cos2(ϕ)=02\rho^2 \sin^2(\phi) \cos^2(\theta) + 2\rho^2 \sin^2(\phi) \sin^2(\theta) - 4\rho^2 \cos^2(\phi) = 0
2ρ2sin2(ϕ)(cos2(θ)+sin2(θ))4ρ2cos2(ϕ)=02\rho^2 \sin^2(\phi) (\cos^2(\theta) + \sin^2(\theta)) - 4\rho^2 \cos^2(\phi) = 0
2ρ2sin2(ϕ)(1)4ρ2cos2(ϕ)=02\rho^2 \sin^2(\phi) (1) - 4\rho^2 \cos^2(\phi) = 0
2ρ2sin2(ϕ)=4ρ2cos2(ϕ)2\rho^2 \sin^2(\phi) = 4\rho^2 \cos^2(\phi)
2sin2(ϕ)=4cos2(ϕ)2 \sin^2(\phi) = 4 \cos^2(\phi)
sin2(ϕ)=2cos2(ϕ)\sin^2(\phi) = 2 \cos^2(\phi)
sin2(ϕ)cos2(ϕ)=2\frac{\sin^2(\phi)}{\cos^2(\phi)} = 2
tan2(ϕ)=2\tan^2(\phi) = 2
tan(ϕ)=2\tan(\phi) = \sqrt{2}
ϕ=arctan(2)\phi = \arctan(\sqrt{2})
Problem 3: x2+y2=9x^2 + y^2 = 9 to spherical coordinates.
In spherical coordinates, we have:
x=ρsin(ϕ)cos(θ)x = \rho \sin(\phi) \cos(\theta)
y=ρsin(ϕ)sin(θ)y = \rho \sin(\phi) \sin(\theta)
z=ρcos(ϕ)z = \rho \cos(\phi)
Substituting into the equation, we get:
(ρsin(ϕ)cos(θ))2+(ρsin(ϕ)sin(θ))2=9(\rho \sin(\phi) \cos(\theta))^2 + (\rho \sin(\phi) \sin(\theta))^2 = 9
ρ2sin2(ϕ)cos2(θ)+ρ2sin2(ϕ)sin2(θ)=9\rho^2 \sin^2(\phi) \cos^2(\theta) + \rho^2 \sin^2(\phi) \sin^2(\theta) = 9
ρ2sin2(ϕ)(cos2(θ)+sin2(θ))=9\rho^2 \sin^2(\phi) (\cos^2(\theta) + \sin^2(\theta)) = 9
ρ2sin2(ϕ)(1)=9\rho^2 \sin^2(\phi) (1) = 9
ρ2sin2(ϕ)=9\rho^2 \sin^2(\phi) = 9

3. Final Answer

1. $r^2 \cos(2\theta) = 25$

2. $\phi = \arctan(\sqrt{2})$

3. $\rho^2 \sin^2(\phi) = 9$

Related problems in "Geometry"

The problem asks us to find the value of $y$ in two right triangles. In the first triangle, the angl...

Pythagorean TheoremRight TrianglesTrigonometry
2025/7/21

We are asked to find the value of $y$ in two right triangles. a) The right triangle has a leg of len...

Right TrianglesPythagorean TheoremTrigonometry45-45-90 Triangle30-60-90 TriangleSineCosine
2025/7/21

The problem asks us to find the value of $y$ in two right triangles. a) We have a right triangle wit...

Right TrianglesPythagorean TheoremTrigonometry45-45-90 Triangles30-60-90 TrianglesHypotenuse
2025/7/21

The problem is to find the length of $HJ$ and the measure of angle $GJN$ given certain information a...

TrianglesMediansAngle BisectorsAngle MeasurementSegment Length
2025/7/21

We are given that $\overline{EJ} \parallel \overline{FK}$, $\overline{JG} \parallel \overline{KH}$, ...

GeometryTriangle CongruenceParallel LinesASA Congruence PostulateProofs
2025/7/16

We are asked to find the value of $y$ in the figure. The polygon has angles $4y$, $4y$, $5y$, $2y$, ...

PolygonInterior AnglesAngle Sum Formula
2025/7/16

The image shows a circle divided into sectors. We are given the degree measures of three sectors: $7...

CircleAnglesSectorCentral Angle
2025/7/16

We have a quadrilateral $ABCD$. Angle $B$ and angle $D$ are right angles. $AB = 10M$. Angle $BAC$ is...

QuadrilateralsTrianglesRight TrianglesIsosceles TrianglesTrigonometryPythagorean TheoremAngle Properties
2025/7/16

We are given a diagram with two lines and angles labeled $x$, $y$, and $z$. The line segment $PQ$ is...

Parallel LinesAnglesTriangle Angle Sum TheoremGeometric Proof
2025/7/16

The problem provides a diagram with lines and angles marked as $x$, $y$, and $z$. The line $PQ$ is p...

Parallel LinesAnglesTransversalsTriangle Angle SumGeometric Proof
2025/7/16