The problem asks to calculate the area of a regular polygon circumscribed about a circle, given that the difference between the perimeter and the side length of the polygon is 25.

GeometryPolygonsAreaPerimeterCircumscribedLimits
2025/3/27

1. Problem Description

The problem asks to calculate the area of a regular polygon circumscribed about a circle, given that the difference between the perimeter and the side length of the polygon is
2
5.

2. Solution Steps

Let nn be the number of sides of the regular polygon, aa be the side length, and rr be the radius of the inscribed circle.
The perimeter of the polygon is P=naP = na.
We are given that Pa=25P - a = 25, so naa=25na - a = 25, which means a(n1)=25a(n-1) = 25.
The area of the regular polygon is given by A=12Pa=12narA = \frac{1}{2}Pa = \frac{1}{2}nar, where P=naP=na is the perimeter and rr is the inradius. Alternatively, we can also express the area as A=nr2tan(πn)A = nr^2 \tan(\frac{\pi}{n}).
We know that a=2rtan(πn)a = 2r \tan(\frac{\pi}{n}). Substituting this into the equation a(n1)=25a(n-1) = 25, we get
2rtan(πn)(n1)=252r \tan(\frac{\pi}{n})(n-1) = 25. Thus, r=252(n1)tan(πn)r = \frac{25}{2(n-1)\tan(\frac{\pi}{n})}.
The area of the regular polygon is A=nr2tan(πn)A = nr^2 \tan(\frac{\pi}{n}). Substituting the expression for rr, we get:
A=n(252(n1)tan(πn))2tan(πn)=n2524(n1)2tan2(πn)tan(πn)=625n4(n1)2tan(πn)A = n \left(\frac{25}{2(n-1)\tan(\frac{\pi}{n})}\right)^2 \tan(\frac{\pi}{n}) = n \frac{25^2}{4(n-1)^2 \tan^2(\frac{\pi}{n})} \tan(\frac{\pi}{n}) = \frac{625n}{4(n-1)^2 \tan(\frac{\pi}{n})}
If the polygon is a square, then n=4n=4.
a(41)=25a(4-1)=25, so 3a=253a = 25 and a=253a = \frac{25}{3}.
The radius of the inscribed circle is r=a2=256r = \frac{a}{2} = \frac{25}{6}.
The area of the square is A=a2=(253)2=6259A = a^2 = (\frac{25}{3})^2 = \frac{625}{9}.
Also, if the polygon is a square (n=4n=4), A=625(4)4(41)2tan(π4)=6259tan(π4)=6259A = \frac{625(4)}{4(4-1)^2 \tan(\frac{\pi}{4})} = \frac{625}{9 \tan(\frac{\pi}{4})} = \frac{625}{9}.
If the polygon is an equilateral triangle (n=3n=3), then a(31)=25a(3-1) = 25, so 2a=252a=25, and a=252a=\frac{25}{2}.
A=3a234A = \frac{3a^2\sqrt{3}}{4} and also A=nr2tan(πn)=3r2tan(π3)=3r23A = nr^2 tan(\frac{\pi}{n}) = 3r^2 tan(\frac{\pi}{3}) = 3r^2\sqrt{3}.
r=a2tan(π/3)=a23=2543r=\frac{a}{2\tan(\pi/3)} = \frac{a}{2\sqrt{3}} = \frac{25}{4\sqrt{3}}
A=3(2543)23=362516(3)3=625316A = 3(\frac{25}{4\sqrt{3}})^2 \sqrt{3} = 3\frac{625}{16(3)} \sqrt{3} = \frac{625\sqrt{3}}{16}.
From a(n1)=25a(n-1) = 25 and a=2rtan(πn)a = 2r\tan(\frac{\pi}{n}), we can derive
2r(n1)tan(πn)=252r(n-1)\tan(\frac{\pi}{n}) = 25, r=252(n1)tan(πn)r = \frac{25}{2(n-1)\tan(\frac{\pi}{n})}
The area of the polygon is A=nr2tan(πn)=n(252(n1)tan(πn))2tan(πn)=625n4(n1)2tan(πn)A = nr^2\tan(\frac{\pi}{n}) = n (\frac{25}{2(n-1)\tan(\frac{\pi}{n})})^2 \tan(\frac{\pi}{n}) = \frac{625n}{4(n-1)^2 \tan(\frac{\pi}{n})}.
Consider the case nn \to \infty, so we approach the circle.
A=πr2A = \pi r^2, the perimeter approaches the circumference P=2πrP = 2\pi r.
Pa=25P - a = 25, then aPna \approx \frac{P}{n}, so PPn=25P - \frac{P}{n} = 25, 2πr(11n)=252\pi r (1-\frac{1}{n}) = 25. When nn \to \infty, 2πr=252\pi r = 25, so r=252πr = \frac{25}{2\pi}.
The area is A=πr2=π(252π)2=6254π62512.56=49.76A = \pi r^2 = \pi (\frac{25}{2\pi})^2 = \frac{625}{4\pi} \approx \frac{625}{12.56} = 49.76.
If we assume nn is very large, then tan(πn)πn\tan(\frac{\pi}{n}) \approx \frac{\pi}{n}. Thus A625n4(n1)2(πn)=625n24(n1)2π6254πA \approx \frac{625n}{4(n-1)^2 (\frac{\pi}{n})} = \frac{625n^2}{4(n-1)^2\pi} \approx \frac{625}{4\pi}
Let's analyze the general formula for AA. As nn gets larger, tan(π/n)π/n\tan(\pi/n) \approx \pi/n. Then
A=625n4(n1)2tan(π/n)625n4(n1)2π/n=625n24(n1)2πA = \frac{625n}{4(n-1)^2 \tan(\pi/n)} \approx \frac{625n}{4(n-1)^2 \pi/n} = \frac{625n^2}{4(n-1)^2 \pi}.
Taking the limit as nn \to \infty, we have
limnA=6254π\lim_{n \to \infty} A = \frac{625}{4\pi}.

3. Final Answer

6254π\frac{625}{4\pi}

Related problems in "Geometry"

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11

$PQRS$ is a cyclic quadrilateral. We are given the measures of its angles in terms of $x$ and $y$. W...

Cyclic QuadrilateralAnglesLinear EquationsSolving Equations
2025/4/11

In the given diagram, line segment $MP$ is a tangent to circle $NQR$ at point $N$. $\angle PNQ = 64^...

Circle GeometryTangentsAnglesTrianglesIsosceles TriangleAlternate Segment Theorem
2025/4/11

We are given a diagram with two parallel lines intersected by two transversals. We need to find the ...

Parallel LinesTransversalsAnglesSupplementary Angles
2025/4/11

A trapezium with sides 10 cm and 21 cm, and height 8 cm is inscribed in a circle of radius 7 cm. The...

AreaTrapeziumCircleArea Calculation
2025/4/11

In circle $PQRS$ with center $O$, $\angle PQR = 72^\circ$ and $OR \parallel PS$. We need to find the...

Circle GeometryAnglesParallel LinesIsosceles Triangle
2025/4/11