The problem asks to calculate the area of a regular polygon circumscribed about a circle, given that the difference between the perimeter and the side length of the polygon is 25.

GeometryPolygonsAreaPerimeterCircumscribedLimits
2025/3/27

1. Problem Description

The problem asks to calculate the area of a regular polygon circumscribed about a circle, given that the difference between the perimeter and the side length of the polygon is
2
5.

2. Solution Steps

Let nn be the number of sides of the regular polygon, aa be the side length, and rr be the radius of the inscribed circle.
The perimeter of the polygon is P=naP = na.
We are given that Pa=25P - a = 25, so naa=25na - a = 25, which means a(n1)=25a(n-1) = 25.
The area of the regular polygon is given by A=12Pa=12narA = \frac{1}{2}Pa = \frac{1}{2}nar, where P=naP=na is the perimeter and rr is the inradius. Alternatively, we can also express the area as A=nr2tan(πn)A = nr^2 \tan(\frac{\pi}{n}).
We know that a=2rtan(πn)a = 2r \tan(\frac{\pi}{n}). Substituting this into the equation a(n1)=25a(n-1) = 25, we get
2rtan(πn)(n1)=252r \tan(\frac{\pi}{n})(n-1) = 25. Thus, r=252(n1)tan(πn)r = \frac{25}{2(n-1)\tan(\frac{\pi}{n})}.
The area of the regular polygon is A=nr2tan(πn)A = nr^2 \tan(\frac{\pi}{n}). Substituting the expression for rr, we get:
A=n(252(n1)tan(πn))2tan(πn)=n2524(n1)2tan2(πn)tan(πn)=625n4(n1)2tan(πn)A = n \left(\frac{25}{2(n-1)\tan(\frac{\pi}{n})}\right)^2 \tan(\frac{\pi}{n}) = n \frac{25^2}{4(n-1)^2 \tan^2(\frac{\pi}{n})} \tan(\frac{\pi}{n}) = \frac{625n}{4(n-1)^2 \tan(\frac{\pi}{n})}
If the polygon is a square, then n=4n=4.
a(41)=25a(4-1)=25, so 3a=253a = 25 and a=253a = \frac{25}{3}.
The radius of the inscribed circle is r=a2=256r = \frac{a}{2} = \frac{25}{6}.
The area of the square is A=a2=(253)2=6259A = a^2 = (\frac{25}{3})^2 = \frac{625}{9}.
Also, if the polygon is a square (n=4n=4), A=625(4)4(41)2tan(π4)=6259tan(π4)=6259A = \frac{625(4)}{4(4-1)^2 \tan(\frac{\pi}{4})} = \frac{625}{9 \tan(\frac{\pi}{4})} = \frac{625}{9}.
If the polygon is an equilateral triangle (n=3n=3), then a(31)=25a(3-1) = 25, so 2a=252a=25, and a=252a=\frac{25}{2}.
A=3a234A = \frac{3a^2\sqrt{3}}{4} and also A=nr2tan(πn)=3r2tan(π3)=3r23A = nr^2 tan(\frac{\pi}{n}) = 3r^2 tan(\frac{\pi}{3}) = 3r^2\sqrt{3}.
r=a2tan(π/3)=a23=2543r=\frac{a}{2\tan(\pi/3)} = \frac{a}{2\sqrt{3}} = \frac{25}{4\sqrt{3}}
A=3(2543)23=362516(3)3=625316A = 3(\frac{25}{4\sqrt{3}})^2 \sqrt{3} = 3\frac{625}{16(3)} \sqrt{3} = \frac{625\sqrt{3}}{16}.
From a(n1)=25a(n-1) = 25 and a=2rtan(πn)a = 2r\tan(\frac{\pi}{n}), we can derive
2r(n1)tan(πn)=252r(n-1)\tan(\frac{\pi}{n}) = 25, r=252(n1)tan(πn)r = \frac{25}{2(n-1)\tan(\frac{\pi}{n})}
The area of the polygon is A=nr2tan(πn)=n(252(n1)tan(πn))2tan(πn)=625n4(n1)2tan(πn)A = nr^2\tan(\frac{\pi}{n}) = n (\frac{25}{2(n-1)\tan(\frac{\pi}{n})})^2 \tan(\frac{\pi}{n}) = \frac{625n}{4(n-1)^2 \tan(\frac{\pi}{n})}.
Consider the case nn \to \infty, so we approach the circle.
A=πr2A = \pi r^2, the perimeter approaches the circumference P=2πrP = 2\pi r.
Pa=25P - a = 25, then aPna \approx \frac{P}{n}, so PPn=25P - \frac{P}{n} = 25, 2πr(11n)=252\pi r (1-\frac{1}{n}) = 25. When nn \to \infty, 2πr=252\pi r = 25, so r=252πr = \frac{25}{2\pi}.
The area is A=πr2=π(252π)2=6254π62512.56=49.76A = \pi r^2 = \pi (\frac{25}{2\pi})^2 = \frac{625}{4\pi} \approx \frac{625}{12.56} = 49.76.
If we assume nn is very large, then tan(πn)πn\tan(\frac{\pi}{n}) \approx \frac{\pi}{n}. Thus A625n4(n1)2(πn)=625n24(n1)2π6254πA \approx \frac{625n}{4(n-1)^2 (\frac{\pi}{n})} = \frac{625n^2}{4(n-1)^2\pi} \approx \frac{625}{4\pi}
Let's analyze the general formula for AA. As nn gets larger, tan(π/n)π/n\tan(\pi/n) \approx \pi/n. Then
A=625n4(n1)2tan(π/n)625n4(n1)2π/n=625n24(n1)2πA = \frac{625n}{4(n-1)^2 \tan(\pi/n)} \approx \frac{625n}{4(n-1)^2 \pi/n} = \frac{625n^2}{4(n-1)^2 \pi}.
Taking the limit as nn \to \infty, we have
limnA=6254π\lim_{n \to \infty} A = \frac{625}{4\pi}.

3. Final Answer

6254π\frac{625}{4\pi}

Related problems in "Geometry"

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3