The problem asks us to prove something about triangle $ABC$ given the equation $\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}$.

GeometryVectorsTrianglesCentroidGeometric Proofs
2025/3/27

1. Problem Description

The problem asks us to prove something about triangle ABCABC given the equation TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}.

2. Solution Steps

Let OO be the origin. Then we have:
TA=OAOT\vec{TA} = \vec{OA} - \vec{OT}
TB=OBOT\vec{TB} = \vec{OB} - \vec{OT}
TC=OCOT\vec{TC} = \vec{OC} - \vec{OT}
Adding these equations together, we have:
TA+TB+TC=OAOT+OBOT+OCOT\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} - \vec{OT} + \vec{OB} - \vec{OT} + \vec{OC} - \vec{OT}
TA+TB+TC=OA+OB+OC3OT\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} + \vec{OB} + \vec{OC} - 3\vec{OT}
Since TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}, we have:
0=OA+OB+OC3OT\vec{0} = \vec{OA} + \vec{OB} + \vec{OC} - 3\vec{OT}
3OT=OA+OB+OC3\vec{OT} = \vec{OA} + \vec{OB} + \vec{OC}
OT=OA+OB+OC3\vec{OT} = \frac{\vec{OA} + \vec{OB} + \vec{OC}}{3}
This means that TT is the centroid of triangle ABCABC. The centroid of a triangle is the intersection of the medians of the triangle. Thus, the point TT is the centroid of the triangle ABCABC.

3. Final Answer

The point TT is the centroid of triangle ABCABC.

Related problems in "Geometry"

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11

$PQRS$ is a cyclic quadrilateral. We are given the measures of its angles in terms of $x$ and $y$. W...

Cyclic QuadrilateralAnglesLinear EquationsSolving Equations
2025/4/11

In the given diagram, line segment $MP$ is a tangent to circle $NQR$ at point $N$. $\angle PNQ = 64^...

Circle GeometryTangentsAnglesTrianglesIsosceles TriangleAlternate Segment Theorem
2025/4/11

We are given a diagram with two parallel lines intersected by two transversals. We need to find the ...

Parallel LinesTransversalsAnglesSupplementary Angles
2025/4/11

A trapezium with sides 10 cm and 21 cm, and height 8 cm is inscribed in a circle of radius 7 cm. The...

AreaTrapeziumCircleArea Calculation
2025/4/11

In circle $PQRS$ with center $O$, $\angle PQR = 72^\circ$ and $OR \parallel PS$. We need to find the...

Circle GeometryAnglesParallel LinesIsosceles Triangle
2025/4/11