We are given a truth table with columns for the propositions P, Q, and R. We need to complete the table by evaluating the expressions $P \rightarrow Q$, $Q \rightarrow R$, $P \land Q$, and $(P \rightarrow Q) \rightarrow (Q \rightarrow R)$ for all possible truth values of P, Q, and R.
2025/6/8
1. Problem Description
We are given a truth table with columns for the propositions P, Q, and R. We need to complete the table by evaluating the expressions , , , and for all possible truth values of P, Q, and R.
2. Solution Steps
We will use the following truth tables for implication () and conjunction ():
is false only when P is true and Q is false. Otherwise, it is true.
is true only when both P and Q are true. Otherwise, it is false.
| P | Q | | P | Q | |
|---|---|--------------------|---|---|---------------|
| T | T | T | T | T | T |
| T | F | F | T | F | F |
| F | T | T | F | T | F |
| F | F | T | F | F | F |
Now, we can complete the truth table step by step.
Row 1: P=T, Q=T, R=T
Row 2: P=T, Q=T, R=F
Row 3: P=T, Q=F, R=T
Row 4: P=T, Q=F, R=F
Row 5: P=F, Q=T, R=T
Row 6: P=F, Q=T, R=F
Row 7: P=F, Q=F, R=T
Row 8: P=F, Q=F, R=F
3. Final Answer
Here is the completed truth table:
| P | Q | R | | | | |
|---|---|---|--------------------|--------------------|---------------|---------------------------------------------------|
| T | T | T | T | T | T | T |
| T | T | F | T | F | T | F |
| T | F | T | F | T | F | T |
| T | F | F | F | T | F | T |
| F | T | T | T | T | F | T |
| F | T | F | T | F | F | F |
| F | F | T | T | T | F | T |
| F | F | F | T | T | F | T |