We can rewrite the fraction inside the integral as:
2x+32x+1=2x+3(2x+3)−2=2x+32x+3−2x+32=1−2x+32 So, the integral becomes:
I=∫(1−2x+32)dx=∫1dx−∫2x+32dx=∫dx−∫2x+32dx The first integral is simply:
∫dx=x+C1 For the second integral, let u=2x+3, then du=2dx. So, dx=21du. Thus, ∫2x+32dx=∫u221du=∫u1du=ln∣u∣+C2=ln∣2x+3∣+C2 Putting it together,
I=x−ln∣2x+3∣+C, where C=C1−C2.