First, we can factor out sinx from the numerator: limx→0x3sinx−sinx⋅cosx=limx→0x3sinx(1−cosx). We know that limx→0xsinx=1. Therefore, we can rewrite the expression as: limx→0xsinx⋅x21−cosx. We know that 1−cosx=2sin2(2x). So, we can rewrite the expression as:
limx→0xsinx⋅x22sin2(2x). We can also write it as:
limx→0xsinx⋅2⋅x2sin2(2x)=limx→0xsinx⋅2⋅xsin(2x)⋅xsin(2x). limx→0xsinx⋅2⋅xsin(2x)⋅xsin(2x)=limx→0xsinx⋅2⋅2xsin(2x)⋅21⋅2xsin(2x)⋅21. limx→0xsinx⋅2⋅41⋅2xsin(2x)⋅2xsin(2x). Since limx→0axsinax=1, limx→0xsinx⋅x21−cosx=1⋅x22⋅sin2(2x)=1⋅limx→0x22sin2(2x)=2⋅limx→0x2sin2(2x). =2⋅limx→0(xsin(2x))2=2⋅limx→0(2xsin(2x)⋅21)2=2⋅(1⋅21)2=2⋅41=21. Alternatively, we can use L'Hopital's rule.
limx→0x3sinx−sinxcosx. Since the limit is of the form 00, we can apply L'Hopital's rule. Taking the derivative of the numerator and denominator, we get:
limx→03x2cosx−(cosxcosx+sinx(−sinx))=limx→03x2cosx−cos2x+sin2x=limx→03x2cosx−cos2x+1−cos2x=limx→03x2cosx−2cos2x+1. =limx→03x2(cosx−1)(1−2cosx). limx→0x21−cosx=21. limx→03x2cosx−2cos2x+1=limx→0−3x2(cosx−1)(2cosx−1)=limx→03x2(1−cosx)(2cosx−1)=limx→0x21−cosx⋅32cosx−1=21⋅32⋅1−1=21⋅31=61. Going back to limx→03x2cosx−2cos2x+1. Differentiating again, limx→06x−sinx+4cosxsinx=limx→06xsinx(4cosx−1)=limx→0xsinx⋅64cosx−1=1⋅64⋅1−1=63=21.