We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approaches $0$.

AnalysisLimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

1. Problem Description

We want to find the limit of the expression sinxsinxcosxx3\frac{\sin x - \sin x \cdot \cos x}{x^3} as xx approaches 00.

2. Solution Steps

First, we can factor out sinx\sin x from the numerator:
limx0sinxsinxcosxx3=limx0sinx(1cosx)x3\lim_{x \to 0} \frac{\sin x - \sin x \cdot \cos x}{x^3} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3}.
We know that limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1. Therefore, we can rewrite the expression as:
limx0sinxx1cosxx2\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x^2}.
We know that 1cosx=2sin2(x2)1 - \cos x = 2 \sin^2(\frac{x}{2}).
So, we can rewrite the expression as:
limx0sinxx2sin2(x2)x2\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{2 \sin^2(\frac{x}{2})}{x^2}.
We can also write it as:
limx0sinxx2sin2(x2)x2=limx0sinxx2sin(x2)xsin(x2)x\lim_{x \to 0} \frac{\sin x}{x} \cdot 2 \cdot \frac{\sin^2(\frac{x}{2})}{x^2} = \lim_{x \to 0} \frac{\sin x}{x} \cdot 2 \cdot \frac{\sin(\frac{x}{2})}{x} \cdot \frac{\sin(\frac{x}{2})}{x}.
limx0sinxx2sin(x2)xsin(x2)x=limx0sinxx2sin(x2)x212sin(x2)x212\lim_{x \to 0} \frac{\sin x}{x} \cdot 2 \cdot \frac{\sin(\frac{x}{2})}{x} \cdot \frac{\sin(\frac{x}{2})}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot 2 \cdot \frac{\sin(\frac{x}{2})}{\frac{x}{2}} \cdot \frac{1}{2} \cdot \frac{\sin(\frac{x}{2})}{\frac{x}{2}} \cdot \frac{1}{2}.
limx0sinxx214sin(x2)x2sin(x2)x2\lim_{x \to 0} \frac{\sin x}{x} \cdot 2 \cdot \frac{1}{4} \cdot \frac{\sin(\frac{x}{2})}{\frac{x}{2}} \cdot \frac{\sin(\frac{x}{2})}{\frac{x}{2}}.
Since limx0sinaxax=1\lim_{x \to 0} \frac{\sin ax}{ax} = 1,
limx0sinxx1cosxx2=12sin2(x2)x2=1limx02sin2(x2)x2=2limx0sin2(x2)x2\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x^2} = 1 \cdot \frac{2 \cdot \sin^2(\frac{x}{2})}{x^2} = 1 \cdot \lim_{x \to 0} \frac{2 \sin^2(\frac{x}{2})}{x^2} = 2 \cdot \lim_{x \to 0} \frac{\sin^2(\frac{x}{2})}{x^2}.
=2limx0(sin(x2)x)2=2limx0(sin(x2)x212)2=2(112)2=214=12= 2 \cdot \lim_{x \to 0} \left( \frac{\sin(\frac{x}{2})}{x} \right)^2 = 2 \cdot \lim_{x \to 0} \left( \frac{\sin(\frac{x}{2})}{\frac{x}{2}} \cdot \frac{1}{2} \right)^2 = 2 \cdot \left( 1 \cdot \frac{1}{2} \right)^2 = 2 \cdot \frac{1}{4} = \frac{1}{2}.
Alternatively, we can use L'Hopital's rule.
limx0sinxsinxcosxx3\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3}. Since the limit is of the form 00\frac{0}{0}, we can apply L'Hopital's rule.
Taking the derivative of the numerator and denominator, we get:
limx0cosx(cosxcosx+sinx(sinx))3x2=limx0cosxcos2x+sin2x3x2=limx0cosxcos2x+1cos2x3x2=limx0cosx2cos2x+13x2\lim_{x \to 0} \frac{\cos x - (\cos x \cos x + \sin x (-\sin x))}{3x^2} = \lim_{x \to 0} \frac{\cos x - \cos^2 x + \sin^2 x}{3x^2} = \lim_{x \to 0} \frac{\cos x - \cos^2 x + 1 - \cos^2 x}{3x^2} = \lim_{x \to 0} \frac{\cos x - 2 \cos^2 x + 1}{3x^2}.
=limx0(cosx1)(12cosx)3x2= \lim_{x \to 0} \frac{(\cos x - 1)(1 - 2 \cos x)}{3x^2}.
limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.
limx0cosx2cos2x+13x2=limx0(cosx1)(2cosx1)3x2=limx0(1cosx)(2cosx1)3x2=limx01cosxx22cosx13=122113=1213=16\lim_{x \to 0} \frac{\cos x - 2 \cos^2 x + 1}{3x^2} = \lim_{x \to 0} \frac{(\cos x - 1)(2 \cos x - 1)}{-3x^2} = \lim_{x \to 0} \frac{(1 - \cos x)(2 \cos x - 1)}{3x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{2 \cos x - 1}{3} = \frac{1}{2} \cdot \frac{2 \cdot 1 - 1}{3} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}.
Going back to limx0cosx2cos2x+13x2\lim_{x \to 0} \frac{\cos x - 2 \cos^2 x + 1}{3x^2}. Differentiating again,
limx0sinx+4cosxsinx6x=limx0sinx(4cosx1)6x=limx0sinxx4cosx16=14116=36=12\lim_{x \to 0} \frac{-\sin x + 4 \cos x \sin x}{6x} = \lim_{x \to 0} \frac{\sin x (4 \cos x - 1)}{6x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{4 \cos x - 1}{6} = 1 \cdot \frac{4 \cdot 1 - 1}{6} = \frac{3}{6} = \frac{1}{2}.

3. Final Answer

The final answer is 12\frac{1}{2}

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect ...

DifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first princip...

CalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10

We are given three problems: a) Sketch the graph of the function $f(x) = x^3 - 12x^2 + 45x - 40$. b)...

CalculusDerivativesIntegrationGraphingDefinite IntegralArea under a curveCubic Function
2025/6/10