The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first principles and find the gradient at $x=2$. b) Find the derivatives of: (i) $f(x) = 6x^2 - 9x + 4$ and (ii) $y = \sqrt{x} + 8\sqrt[3]{x} - 2\sqrt[4]{x}$. c) Use the quotient rule to find the derivative of $g(x) = \frac{6x^2}{2-x}$. d) Differentiate $f(x) = 2e^x - 8^x$. e) Integrate $\int (2 + \frac{5}{7}x - 6x^2) dx$. f) Evaluate the definite integral $\int_1^4 (3x-2) dx$. g) Evaluate $\int \frac{3x+11}{x^2 - x - 6} dx$ using partial fractions.

AnalysisCalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10

1. Problem Description

The problem consists of several calculus questions:
a) Differentiate f(x)=x2f(x) = x^2 from first principles and find the gradient at x=2x=2.
b) Find the derivatives of: (i) f(x)=6x29x+4f(x) = 6x^2 - 9x + 4 and (ii) y=x+8x32x4y = \sqrt{x} + 8\sqrt[3]{x} - 2\sqrt[4]{x}.
c) Use the quotient rule to find the derivative of g(x)=6x22xg(x) = \frac{6x^2}{2-x}.
d) Differentiate f(x)=2ex8xf(x) = 2e^x - 8^x.
e) Integrate (2+57x6x2)dx\int (2 + \frac{5}{7}x - 6x^2) dx.
f) Evaluate the definite integral 14(3x2)dx\int_1^4 (3x-2) dx.
g) Evaluate 3x+11x2x6dx\int \frac{3x+11}{x^2 - x - 6} dx using partial fractions.

2. Solution Steps

a) Differentiation from first principles:
f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.
For f(x)=x2f(x) = x^2, f(x+h)=(x+h)2=x2+2xh+h2f(x+h) = (x+h)^2 = x^2 + 2xh + h^2.
f(x)=limh0x2+2xh+h2x2h=limh02xh+h2h=limh0(2x+h)=2xf'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x.
The derivative is f(x)=2xf'(x) = 2x. At x=2x=2, the gradient is f(2)=2(2)=4f'(2) = 2(2) = 4.
b) (i) f(x)=6x29x+4f(x) = 6x^2 - 9x + 4
f(x)=12x9f'(x) = 12x - 9.
(ii) y=x+8x32x4=x1/2+8x1/32x1/4y = \sqrt{x} + 8\sqrt[3]{x} - 2\sqrt[4]{x} = x^{1/2} + 8x^{1/3} - 2x^{1/4}
y=12x1/2+83x2/324x3/4=12x+83x2312x34y' = \frac{1}{2}x^{-1/2} + \frac{8}{3}x^{-2/3} - \frac{2}{4}x^{-3/4} = \frac{1}{2\sqrt{x}} + \frac{8}{3\sqrt[3]{x^2}} - \frac{1}{2\sqrt[4]{x^3}}.
c) Quotient rule: If g(x)=u(x)v(x)g(x) = \frac{u(x)}{v(x)}, then g(x)=u(x)v(x)u(x)v(x)[v(x)]2g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}.
g(x)=6x22xg(x) = \frac{6x^2}{2-x}. Let u(x)=6x2u(x) = 6x^2 and v(x)=2xv(x) = 2-x. Then u(x)=12xu'(x) = 12x and v(x)=1v'(x) = -1.
g(x)=(12x)(2x)(6x2)(1)(2x)2=24x12x2+6x2(2x)2=24x6x2(2x)2=6x(4x)(2x)2g'(x) = \frac{(12x)(2-x) - (6x^2)(-1)}{(2-x)^2} = \frac{24x - 12x^2 + 6x^2}{(2-x)^2} = \frac{24x - 6x^2}{(2-x)^2} = \frac{6x(4-x)}{(2-x)^2}.
d) f(x)=2ex8xf(x) = 2e^x - 8^x
f(x)=2ex8xln(8)f'(x) = 2e^x - 8^x \ln(8).
e) (2+57x6x2)dx=2x+57x226x33+C=2x+514x22x3+C\int (2 + \frac{5}{7}x - 6x^2) dx = 2x + \frac{5}{7} \cdot \frac{x^2}{2} - 6 \cdot \frac{x^3}{3} + C = 2x + \frac{5}{14}x^2 - 2x^3 + C.
f) 14(3x2)dx=[32x22x]14=(32(42)2(4))(32(12)2(1))=(248)(322)=16(12)=16+12=332\int_1^4 (3x-2) dx = [\frac{3}{2}x^2 - 2x]_1^4 = (\frac{3}{2}(4^2) - 2(4)) - (\frac{3}{2}(1^2) - 2(1)) = (24 - 8) - (\frac{3}{2} - 2) = 16 - (-\frac{1}{2}) = 16 + \frac{1}{2} = \frac{33}{2}.
g) 3x+11x2x6dx=3x+11(x3)(x+2)dx\int \frac{3x+11}{x^2 - x - 6} dx = \int \frac{3x+11}{(x-3)(x+2)} dx.
Using partial fractions, 3x+11(x3)(x+2)=Ax3+Bx+2\frac{3x+11}{(x-3)(x+2)} = \frac{A}{x-3} + \frac{B}{x+2}.
3x+11=A(x+2)+B(x3)3x+11 = A(x+2) + B(x-3).
When x=3x=3, 3(3)+11=A(3+2)+B(33)20=5AA=43(3)+11 = A(3+2) + B(3-3) \Rightarrow 20 = 5A \Rightarrow A=4.
When x=2x=-2, 3(2)+11=A(2+2)+B(23)5=5BB=13(-2)+11 = A(-2+2) + B(-2-3) \Rightarrow 5 = -5B \Rightarrow B=-1.
3x+11(x3)(x+2)dx=(4x31x+2)dx=4lnx3lnx+2+C\int \frac{3x+11}{(x-3)(x+2)} dx = \int (\frac{4}{x-3} - \frac{1}{x+2}) dx = 4\ln|x-3| - \ln|x+2| + C.

3. Final Answer

a) f(x)=2xf'(x) = 2x, Gradient at x=2x=2 is

4. b) (i) $f'(x) = 12x - 9$ (ii) $y' = \frac{1}{2\sqrt{x}} + \frac{8}{3\sqrt[3]{x^2}} - \frac{1}{2\sqrt[4]{x^3}}$

c) g(x)=6x(4x)(2x)2g'(x) = \frac{6x(4-x)}{(2-x)^2}
d) f(x)=2ex8xln(8)f'(x) = 2e^x - 8^x \ln(8)
e) (2+57x6x2)dx=2x+514x22x3+C\int (2 + \frac{5}{7}x - 6x^2) dx = 2x + \frac{5}{14}x^2 - 2x^3 + C
f) 14(3x2)dx=332\int_1^4 (3x-2) dx = \frac{33}{2}
g) 3x+11x2x6dx=4lnx3lnx+2+C\int \frac{3x+11}{x^2 - x - 6} dx = 4\ln|x-3| - \ln|x+2| + C

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect ...

DifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

We are given three problems: a) Sketch the graph of the function $f(x) = x^3 - 12x^2 + 45x - 40$. b)...

CalculusDerivativesIntegrationGraphingDefinite IntegralArea under a curveCubic Function
2025/6/10