First, rewrite the function using exponents:
y=(xe2x2+3)21. Now we will use the chain rule to find the derivative.
The chain rule states that if y=f(g(x)), then dxdy=f′(g(x))⋅g′(x). Also, we will use the product rule: If y=u(x)v(x), then dxdy=u′(x)v(x)+u(x)v′(x). And, the derivative of ef(x) is ef(x)f′(x). Applying the chain rule:
dxdy=21(xe2x2+3)−21⋅dxd(xe2x2+3) Now we need to find the derivative of xe2x2+3 using the product rule. Let u(x)=x and v(x)=e2x2+3. Then u′(x)=1 and v′(x)=e2x2+3⋅dxd(2x2+3)=e2x2+3⋅(4x). So, dxd(xe2x2+3)=(1)e2x2+3+x(4xe2x2+3)=e2x2+3+4x2e2x2+3=e2x2+3(1+4x2). Substituting this back into the original derivative:
dxdy=21(xe2x2+3)−21⋅e2x2+3(1+4x2) dxdy=2xe2x2+3e2x2+3(1+4x2)