The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

AnalysisCalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

1. Problem Description

The problem asks to find the derivative of the function y=xe2x2+3y = \sqrt{xe^{2x^2+3}}.

2. Solution Steps

First, rewrite the function using exponents:
y=(xe2x2+3)12y = (xe^{2x^2+3})^{\frac{1}{2}}.
Now we will use the chain rule to find the derivative.
The chain rule states that if y=f(g(x))y = f(g(x)), then dydx=f(g(x))g(x)\frac{dy}{dx} = f'(g(x)) \cdot g'(x).
Also, we will use the product rule: If y=u(x)v(x)y = u(x)v(x), then dydx=u(x)v(x)+u(x)v(x)\frac{dy}{dx} = u'(x)v(x) + u(x)v'(x).
And, the derivative of ef(x)e^{f(x)} is ef(x)f(x)e^{f(x)} f'(x).
Applying the chain rule:
dydx=12(xe2x2+3)12ddx(xe2x2+3)\frac{dy}{dx} = \frac{1}{2} (xe^{2x^2+3})^{-\frac{1}{2}} \cdot \frac{d}{dx} (xe^{2x^2+3})
Now we need to find the derivative of xe2x2+3xe^{2x^2+3} using the product rule.
Let u(x)=xu(x) = x and v(x)=e2x2+3v(x) = e^{2x^2+3}.
Then u(x)=1u'(x) = 1 and v(x)=e2x2+3ddx(2x2+3)=e2x2+3(4x)v'(x) = e^{2x^2+3} \cdot \frac{d}{dx} (2x^2+3) = e^{2x^2+3} \cdot (4x).
So, ddx(xe2x2+3)=(1)e2x2+3+x(4xe2x2+3)=e2x2+3+4x2e2x2+3=e2x2+3(1+4x2)\frac{d}{dx} (xe^{2x^2+3}) = (1) e^{2x^2+3} + x(4x e^{2x^2+3}) = e^{2x^2+3} + 4x^2 e^{2x^2+3} = e^{2x^2+3}(1+4x^2).
Substituting this back into the original derivative:
dydx=12(xe2x2+3)12e2x2+3(1+4x2)\frac{dy}{dx} = \frac{1}{2} (xe^{2x^2+3})^{-\frac{1}{2}} \cdot e^{2x^2+3} (1+4x^2)
dydx=e2x2+3(1+4x2)2xe2x2+3\frac{dy}{dx} = \frac{e^{2x^2+3} (1+4x^2)}{2 \sqrt{xe^{2x^2+3}}}

3. Final Answer

dydx=e2x2+3(1+4x2)2xe2x2+3\frac{dy}{dx} = \frac{e^{2x^2+3}(1+4x^2)}{2\sqrt{xe^{2x^2+3}}}

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect ...

DifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first princip...

CalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10

We are given three problems: a) Sketch the graph of the function $f(x) = x^3 - 12x^2 + 45x - 40$. b)...

CalculusDerivativesIntegrationGraphingDefinite IntegralArea under a curveCubic Function
2025/6/10