The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect to $x$.

AnalysisDifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

1. Problem Description

The problem is to find the derivative of the function y=e12xsin2(x)y = e^{\frac{1}{2}x} \sin^2(x) with respect to xx.

2. Solution Steps

We need to find dydx\frac{dy}{dx}. We will use the product rule and the chain rule. The product rule states that if y=u(x)v(x)y = u(x)v(x), then dydx=u(x)v(x)+u(x)v(x)\frac{dy}{dx} = u'(x)v(x) + u(x)v'(x). In this case, let u(x)=e12xu(x) = e^{\frac{1}{2}x} and v(x)=sin2(x)v(x) = \sin^2(x).
First, let's find the derivative of u(x)u(x) with respect to xx:
u(x)=e12xu(x) = e^{\frac{1}{2}x}
u(x)=ddx(e12x)u'(x) = \frac{d}{dx}(e^{\frac{1}{2}x})
Using the chain rule:
u(x)=e12xddx(12x)u'(x) = e^{\frac{1}{2}x} \cdot \frac{d}{dx}(\frac{1}{2}x)
u(x)=e12x12u'(x) = e^{\frac{1}{2}x} \cdot \frac{1}{2}
u(x)=12e12xu'(x) = \frac{1}{2}e^{\frac{1}{2}x}
Next, let's find the derivative of v(x)v(x) with respect to xx:
v(x)=sin2(x)v(x) = \sin^2(x)
v(x)=ddx(sin2(x))v'(x) = \frac{d}{dx}(\sin^2(x))
Using the chain rule:
v(x)=2sin(x)ddx(sin(x))v'(x) = 2\sin(x) \cdot \frac{d}{dx}(\sin(x))
v(x)=2sin(x)cos(x)v'(x) = 2\sin(x) \cdot \cos(x)
v(x)=2sin(x)cos(x)v'(x) = 2\sin(x)\cos(x)
We can also write this as v(x)=sin(2x)v'(x) = \sin(2x) using the double angle formula.
Now, we apply the product rule:
dydx=u(x)v(x)+u(x)v(x)\frac{dy}{dx} = u'(x)v(x) + u(x)v'(x)
dydx=(12e12x)(sin2(x))+(e12x)(2sin(x)cos(x))\frac{dy}{dx} = (\frac{1}{2}e^{\frac{1}{2}x})(\sin^2(x)) + (e^{\frac{1}{2}x})(2\sin(x)\cos(x))
dydx=12e12xsin2(x)+2e12xsin(x)cos(x)\frac{dy}{dx} = \frac{1}{2}e^{\frac{1}{2}x}\sin^2(x) + 2e^{\frac{1}{2}x}\sin(x)\cos(x)
We can factor out e12xe^{\frac{1}{2}x}:
dydx=e12x(12sin2(x)+2sin(x)cos(x))\frac{dy}{dx} = e^{\frac{1}{2}x}(\frac{1}{2}\sin^2(x) + 2\sin(x)\cos(x))
We can also use the double angle formula sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x):
dydx=e12x(12sin2(x)+sin(2x))\frac{dy}{dx} = e^{\frac{1}{2}x}(\frac{1}{2}\sin^2(x) + \sin(2x))

3. Final Answer

dydx=e12x(12sin2(x)+sin(2x))\frac{dy}{dx} = e^{\frac{1}{2}x}(\frac{1}{2}\sin^2(x) + \sin(2x))

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first princip...

CalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10

We are given three problems: a) Sketch the graph of the function $f(x) = x^3 - 12x^2 + 45x - 40$. b)...

CalculusDerivativesIntegrationGraphingDefinite IntegralArea under a curveCubic Function
2025/6/10