Given vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ such that $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 5$, and $|\vec{c}| = 7$. Show that the angle between $\vec{a}$ and $\vec{b}$ is $60^\circ$.

GeometryVectorsDot ProductAngle between vectorsVector Algebra
2025/3/29

1. Problem Description

Given vectors a\vec{a}, b\vec{b}, and c\vec{c} such that a+b+c=0\vec{a} + \vec{b} + \vec{c} = 0, a=3|\vec{a}| = 3, b=5|\vec{b}| = 5, and c=7|\vec{c}| = 7. Show that the angle between a\vec{a} and b\vec{b} is 6060^\circ.

2. Solution Steps

Since a+b+c=0\vec{a} + \vec{b} + \vec{c} = 0, we have c=(a+b)\vec{c} = -(\vec{a} + \vec{b}).
Taking the magnitude squared of both sides, we get c2=(a+b)2=a+b2|\vec{c}|^2 = |-(\vec{a} + \vec{b})|^2 = |\vec{a} + \vec{b}|^2.
Expanding the magnitude squared, we have:
c2=(a+b)(a+b)=aa+2(ab)+bb=a2+2(ab)+b2|\vec{c}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a} + 2(\vec{a} \cdot \vec{b}) + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2.
We also know that ab=abcosθ\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos{\theta}, where θ\theta is the angle between a\vec{a} and b\vec{b}.
So, c2=a2+2abcosθ+b2|\vec{c}|^2 = |\vec{a}|^2 + 2|\vec{a}| |\vec{b}| \cos{\theta} + |\vec{b}|^2.
Substituting the given values:
72=32+2(3)(5)cosθ+527^2 = 3^2 + 2(3)(5) \cos{\theta} + 5^2.
49=9+30cosθ+2549 = 9 + 30 \cos{\theta} + 25.
49=34+30cosθ49 = 34 + 30 \cos{\theta}.
15=30cosθ15 = 30 \cos{\theta}.
cosθ=1530=12\cos{\theta} = \frac{15}{30} = \frac{1}{2}.
θ=arccos(12)=60\theta = \arccos(\frac{1}{2}) = 60^\circ.

3. Final Answer

The angle between a\vec{a} and b\vec{b} is 6060^\circ.

Related problems in "Geometry"

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8

The problem asks us to find the size of angle $d$ in the given diagram. The diagram shows a quadrila...

QuadrilateralsAnglesExterior AnglesInterior Angles
2025/6/8

The problem is to find the size of angle DAB in a quadrilateral ABCD. We are given that angle D = $8...

QuadrilateralAnglesGeometric Proof
2025/6/8

The problem asks to find the size of angle $a$ in the given quadrilateral. The other angles in the q...

QuadrilateralsAnglesPolygon Interior Angles
2025/6/8

We are given a triangle $ABD$ with a smaller triangle $DEC$ inside. Triangle $DEC$ is equilateral. A...

TrianglesAnglesEquilateral TriangleAngle Calculation
2025/6/8

We are given a triangle $ABC$ with a smaller equilateral triangle $DEC$ inside it. The angle $BAC$ i...

TrianglesAnglesGeometric ProofsEquilateral Triangle
2025/6/8

The problem states that triangle $DEC$ is an equilateral triangle and angle $BAC$ is $50$ degrees. T...

TrianglesAnglesEquilateral TriangleAngle Sum PropertySupplementary Angles
2025/6/8

The problem describes a triangle ABC with a smaller equilateral triangle DEC inside it. We are given...

TrianglesAnglesGeometric Proofs
2025/6/8