Given a regular hexagon $ABCDEF$, let $M$ be the midpoint of segment $DE$, $N$ be the midpoint of segment $AM$, and $P$ be the midpoint of segment $BC$. Express vector $\vec{NP}$ in terms of vectors $\vec{AB}$ and $\vec{AF}$.

GeometryVectorsGeometryHexagon
2025/3/29

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, let MM be the midpoint of segment DEDE, NN be the midpoint of segment AMAM, and PP be the midpoint of segment BCBC. Express vector NP\vec{NP} in terms of vectors AB\vec{AB} and AF\vec{AF}.

2. Solution Steps

Let OO be the center of the hexagon. We have NP=OPON\vec{NP} = \vec{OP} - \vec{ON}. Also, OP=OB+BP=OB+12BC\vec{OP} = \vec{OB} + \vec{BP} = \vec{OB} + \frac{1}{2}\vec{BC}.
Since ABCDEFABCDEF is a regular hexagon, we can express vectors in terms of AB\vec{AB} and AF\vec{AF}.
We have OB=OA+AB\vec{OB} = \vec{OA} + \vec{AB}. Also, OA=OD\vec{OA} = - \vec{OD}.
Also, OD=OC+CD=OB+CD\vec{OD} = \vec{OC} + \vec{CD} = \vec{OB} + \vec{CD}.
Then, OA=OD=OCCD=(OB+CD)\vec{OA} = - \vec{OD} = - \vec{OC} - \vec{CD} = - (\vec{OB} + \vec{CD}).
Since BC=AO\vec{BC} = \vec{AO}, BC=OA\vec{BC} = - \vec{OA}.
Therefore, OP=OB+12BC=OB12OA\vec{OP} = \vec{OB} + \frac{1}{2}\vec{BC} = \vec{OB} - \frac{1}{2}\vec{OA}.
We know AM=OMOA\vec{AM} = \vec{OM} - \vec{OA}. Also OM=12(OD+OE)\vec{OM} = \frac{1}{2}(\vec{OD} + \vec{OE}).
We have OD=AB+AF\vec{OD} = \vec{AB} + \vec{AF} and OE=AF+ED=AFBA=AFAB\vec{OE} = \vec{AF} + \vec{ED} = \vec{AF} - \vec{BA} = \vec{AF} - \vec{AB}.
OM=12(AB+AF+AFAB)=12(2AF)=AF\vec{OM} = \frac{1}{2}(\vec{AB} + \vec{AF} + \vec{AF} - \vec{AB}) = \frac{1}{2}(2\vec{AF}) = \vec{AF}.
OA=AB+BC+CO=(ODABOC)=(DC+COOB)=FO=(BCAF+FE+ED)=(OC)=AB+AF\vec{OA} = \vec{AB} + \vec{BC} + \vec{CO} = -(\vec{OD} - \vec{AB} - \vec{OC}) = -(\vec{DC} + \vec{CO} - \vec{OB}) = \vec{FO} = -(\vec{BC} - \vec{AF} + \vec{FE} + \vec{ED}) = - (\vec{OC}) = \vec{AB}+\vec{AF}
OD=AB+AF\vec{OD} = \vec{AB} + \vec{AF}. OA=ABAF\vec{OA} = - \vec{AB} - \vec{AF}
AM=OMOA=AF(ABAF)=AF+AB+AF=AB+2AF\vec{AM} = \vec{OM} - \vec{OA} = \vec{AF} - (- \vec{AB} - \vec{AF}) = \vec{AF} + \vec{AB} + \vec{AF} = \vec{AB} + 2\vec{AF}.
ON=OA+AN=OA+12AM=ABAF+12(AB+2AF)=ABAF+12AB+AF=12AB\vec{ON} = \vec{OA} + \vec{AN} = \vec{OA} + \frac{1}{2} \vec{AM} = - \vec{AB} - \vec{AF} + \frac{1}{2}(\vec{AB} + 2\vec{AF}) = - \vec{AB} - \vec{AF} + \frac{1}{2}\vec{AB} + \vec{AF} = - \frac{1}{2} \vec{AB}.
OP=OB+12BC=AB+OA+12AO=ABABAF12OA=AB(AB+AF)+12(AB+AF)=AF+12AB\vec{OP} = \vec{OB} + \frac{1}{2} \vec{BC} = \vec{AB} + \vec{OA} + \frac{1}{2} \vec{AO} = \vec{AB} - \vec{AB} - \vec{AF} - \frac{1}{2} \vec{OA} = \vec{AB} - (\vec{AB} + \vec{AF}) + \frac{1}{2} (\vec{AB} + \vec{AF}) = \vec{AF} + \frac{1}{2} \vec{AB}
OP=12ABAF=OB12AO12OC=12AB+12AF\vec{OP} = \frac{1}{2}\vec{AB} - \vec{AF} = \vec{OB} - \frac{1}{2} \vec{AO} - \frac{1}{2} \vec{OC}= \frac{1}{2}\vec{AB} + \frac{1}{2} \vec{AF}
NP=OPON=(12AB+12AF)(12AB)=12AB+12AF+12AB=AB+12AF \vec{NP} = \vec{OP} - \vec{ON} = (\frac{1}{2}\vec{AB} + \frac{1}{2} \vec{AF}) - (- \frac{1}{2} \vec{AB}) = \frac{1}{2}\vec{AB} + \frac{1}{2} \vec{AF} + \frac{1}{2} \vec{AB} = \vec{AB} + \frac{1}{2}\vec{AF}.

3. Final Answer

NP=AB+12AF\vec{NP} = \vec{AB} + \frac{1}{2}\vec{AF}

Related problems in "Geometry"

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8

The problem asks us to find the size of angle $d$ in the given diagram. The diagram shows a quadrila...

QuadrilateralsAnglesExterior AnglesInterior Angles
2025/6/8

The problem is to find the size of angle DAB in a quadrilateral ABCD. We are given that angle D = $8...

QuadrilateralAnglesGeometric Proof
2025/6/8

The problem asks to find the size of angle $a$ in the given quadrilateral. The other angles in the q...

QuadrilateralsAnglesPolygon Interior Angles
2025/6/8

We are given a triangle $ABD$ with a smaller triangle $DEC$ inside. Triangle $DEC$ is equilateral. A...

TrianglesAnglesEquilateral TriangleAngle Calculation
2025/6/8

We are given a triangle $ABC$ with a smaller equilateral triangle $DEC$ inside it. The angle $BAC$ i...

TrianglesAnglesGeometric ProofsEquilateral Triangle
2025/6/8

The problem states that triangle $DEC$ is an equilateral triangle and angle $BAC$ is $50$ degrees. T...

TrianglesAnglesEquilateral TriangleAngle Sum PropertySupplementary Angles
2025/6/8

The problem describes a triangle ABC with a smaller equilateral triangle DEC inside it. We are given...

TrianglesAnglesGeometric Proofs
2025/6/8