We are asked to solve three problems: e) $\frac{3}{1 + \sqrt{3}}$ f) $\frac{\sqrt{2}+1}{\sqrt{2}-1}$ g) $\frac{2\sqrt{5}}{\sqrt{2}-\sqrt{3}}$

AlgebraSimplificationRadicalsRationalizing the denominator
2025/3/30

1. Problem Description

We are asked to solve three problems:
e) 31+3\frac{3}{1 + \sqrt{3}}
f) 2+121\frac{\sqrt{2}+1}{\sqrt{2}-1}
g) 2523\frac{2\sqrt{5}}{\sqrt{2}-\sqrt{3}}

2. Solution Steps

e) To simplify 31+3\frac{3}{1 + \sqrt{3}}, we multiply the numerator and denominator by the conjugate of the denominator, which is 131 - \sqrt{3}.
31+3=3(13)(1+3)(13)=3(13)1(3)2=3(13)13=3(13)2=3(31)2\frac{3}{1 + \sqrt{3}} = \frac{3(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{3(1 - \sqrt{3})}{1 - (\sqrt{3})^2} = \frac{3(1 - \sqrt{3})}{1 - 3} = \frac{3(1 - \sqrt{3})}{-2} = \frac{3(\sqrt{3} - 1)}{2}
f) To simplify 2+121\frac{\sqrt{2}+1}{\sqrt{2}-1}, we multiply the numerator and denominator by the conjugate of the denominator, which is 2+1\sqrt{2} + 1.
2+121=(2+1)(2+1)(21)(2+1)=(2+1)2(2)212=2+22+121=3+221=3+22\frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{(\sqrt{2}+1)^2}{(\sqrt{2})^2 - 1^2} = \frac{2 + 2\sqrt{2} + 1}{2 - 1} = \frac{3 + 2\sqrt{2}}{1} = 3 + 2\sqrt{2}
g) To simplify 2523\frac{2\sqrt{5}}{\sqrt{2}-\sqrt{3}}, we multiply the numerator and denominator by the conjugate of the denominator, which is 2+3\sqrt{2} + \sqrt{3}.
2523=25(2+3)(23)(2+3)=25(2+3)(2)2(3)2=2(10+15)23=2(10+15)1=2(10+15)\frac{2\sqrt{5}}{\sqrt{2}-\sqrt{3}} = \frac{2\sqrt{5}(\sqrt{2} + \sqrt{3})}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})} = \frac{2\sqrt{5}(\sqrt{2} + \sqrt{3})}{(\sqrt{2})^2 - (\sqrt{3})^2} = \frac{2(\sqrt{10} + \sqrt{15})}{2 - 3} = \frac{2(\sqrt{10} + \sqrt{15})}{-1} = -2(\sqrt{10} + \sqrt{15})

3. Final Answer

e) 3(31)2\frac{3(\sqrt{3} - 1)}{2}
f) 3+223 + 2\sqrt{2}
g) 2(10+15)-2(\sqrt{10} + \sqrt{15})

Related problems in "Algebra"

The problem is to solve the following system of equations for $x$ and $y$: $x - y = 1$ $4 > x^2 - y^...

Systems of EquationsInequalitiesAlgebraic ManipulationDifference of Squares
2025/5/14

We are given two sets of equations and asked to solve them. Set 1: $x^2 - y^2 = 3$ $x - y = 1$ Set 2...

Systems of EquationsQuadratic EquationsComplex NumbersDifference of Squares
2025/5/14

We are given a system of two equations: $x^2 + y^2 = 5$ $x^2 + x^2 + 3y^2 = 14$, which simplifies to...

Systems of EquationsSubstitutionQuadratic Equations
2025/5/14

The problem asks us to find the domain of the function $f(x) = \sqrt[5]{2x - 1}$.

DomainFunctionsRadicalsInequalities
2025/5/14

Find the inverse of the function $f(x) = \sqrt{x^2 - 1}$.

Inverse FunctionsFunctionsSquare RootsDomain and Range
2025/5/14

We are given two functions, $f(x) = 3x - 1$ and $g(x) = 2x^3$. We need to evaluate $f(g(-2))$.

Function CompositionAlgebraic Manipulation
2025/5/14

We are given a matrix $A = \begin{pmatrix} 5 & a \\ -1 & -5 \end{pmatrix}$. We need to find the valu...

Matrix ExponentialsEigenvaluesTraceCharacteristic Equation
2025/5/14

The problem asks which of the given sets $S_1$, $S_2$, and $S_3$ form a basis for $R^3$. $S_1 = \{(...

Linear AlgebraBasisVector SpaceDeterminantLinear Independence
2025/5/14

Let $A: R^2 \to R^2$ be a linear operator. Its matrix representation in the standard basis $(e_1, e_...

Linear TransformationsChange of BasisMatrix RepresentationEigenvalues and Eigenvectors
2025/5/14

We need to compute the element $a_{11}$ of the matrix $A = (Q^T Q)^3$, where $Q = \begin{pmatrix} 0 ...

Matrix MultiplicationMatrix TransposeMatrix PowersIdentity Matrix
2025/5/14