Simplify the expression $-2\sqrt{10} - 2\sqrt{15}$.

AlgebraSimplificationRadicalsAlgebraic Manipulation
2025/3/30

1. Problem Description

Simplify the expression 210215-2\sqrt{10} - 2\sqrt{15}.

2. Solution Steps

The given expression is 210215-2\sqrt{10} - 2\sqrt{15}.
We can factor out 2-2 from both terms:
210215=2(10+15)-2\sqrt{10} - 2\sqrt{15} = -2(\sqrt{10} + \sqrt{15})
Now, we can try to simplify the terms inside the parentheses.
10=25=25\sqrt{10} = \sqrt{2 \cdot 5} = \sqrt{2} \cdot \sqrt{5}
15=35=35\sqrt{15} = \sqrt{3 \cdot 5} = \sqrt{3} \cdot \sqrt{5}
So we have:
2(25+35)-2(\sqrt{2} \cdot \sqrt{5} + \sqrt{3} \cdot \sqrt{5})
We can factor out 5\sqrt{5}:
25(2+3)-2\sqrt{5}(\sqrt{2} + \sqrt{3})
This is the simplest form.

3. Final Answer

25(2+3)-2\sqrt{5}(\sqrt{2} + \sqrt{3})