The problem gives a function $f(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x$. We need to: (9) Transform $f(x)$ into the form $f(x) = a \sin 2x + b \cos 2x + c$, where $a$, $b$, and $c$ are constants. (10) Find the maximum and minimum values of $f(x)$ in the interval $0 \le x \le \pi$.

AlgebraTrigonometryTrigonometric IdentitiesDouble Angle FormulasFinding Maximum and Minimum
2025/6/24

1. Problem Description

The problem gives a function f(x)=cos2x+23cosxsinx+3sin2xf(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x. We need to:
(9) Transform f(x)f(x) into the form f(x)=asin2x+bcos2x+cf(x) = a \sin 2x + b \cos 2x + c, where aa, bb, and cc are constants.
(10) Find the maximum and minimum values of f(x)f(x) in the interval 0xπ0 \le x \le \pi.

2. Solution Steps

(9)
First, we rewrite the function using the double angle formulas.
sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x
cos2x=cos2xsin2x\cos 2x = \cos^2 x - \sin^2 x
cos2x=1+cos2x2\cos^2 x = \frac{1 + \cos 2x}{2}
sin2x=1cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}
Substitute these formulas into f(x)f(x):
f(x)=cos2x+23cosxsinx+3sin2xf(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x
f(x)=1+cos2x2+3sin2x+31cos2x2f(x) = \frac{1 + \cos 2x}{2} + \sqrt{3} \sin 2x + 3\frac{1 - \cos 2x}{2}
f(x)=12+12cos2x+3sin2x+3232cos2xf(x) = \frac{1}{2} + \frac{1}{2} \cos 2x + \sqrt{3} \sin 2x + \frac{3}{2} - \frac{3}{2} \cos 2x
f(x)=3sin2xcos2x+2f(x) = \sqrt{3} \sin 2x - \cos 2x + 2
So, we have a=3a = \sqrt{3}, b=1b = -1, and c=2c = 2. Therefore,
f(x)=3sin2xcos2x+2f(x) = \sqrt{3} \sin 2x - \cos 2x + 2
(10)
Now, we need to find the maximum and minimum values of f(x)=3sin2xcos2x+2f(x) = \sqrt{3} \sin 2x - \cos 2x + 2 for 0xπ0 \le x \le \pi.
We can rewrite 3sin2xcos2x\sqrt{3} \sin 2x - \cos 2x in the form Rsin(2x+α)R\sin(2x + \alpha).
R=(3)2+(1)2=3+1=4=2R = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3+1} = \sqrt{4} = 2.
So, f(x)=2sin(2x+α)+2f(x) = 2\sin(2x + \alpha) + 2, where cosα=32\cos \alpha = \frac{\sqrt{3}}{2} and sinα=12\sin \alpha = -\frac{1}{2}. Thus, α=π6\alpha = -\frac{\pi}{6}.
Then, f(x)=2sin(2xπ6)+2f(x) = 2\sin(2x - \frac{\pi}{6}) + 2.
Since 0xπ0 \le x \le \pi, we have 02x2π0 \le 2x \le 2\pi.
Therefore, π62xπ62ππ6=11π6-\frac{\pi}{6} \le 2x - \frac{\pi}{6} \le 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}.
The maximum value of sin(2xπ6)\sin(2x - \frac{\pi}{6}) is 1, which occurs when 2xπ6=π22x - \frac{\pi}{6} = \frac{\pi}{2}, so 2x=π2+π6=4π6=2π32x = \frac{\pi}{2} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3}, thus x=π3x = \frac{\pi}{3}.
The maximum value of f(x)f(x) is 2(1)+2=42(1) + 2 = 4.
The minimum value of sin(2xπ6)\sin(2x - \frac{\pi}{6}) is -1, which occurs when 2xπ6=3π22x - \frac{\pi}{6} = \frac{3\pi}{2}, so 2x=3π2+π6=10π6=5π32x = \frac{3\pi}{2} + \frac{\pi}{6} = \frac{10\pi}{6} = \frac{5\pi}{3}, thus x=5π6x = \frac{5\pi}{6}.
The minimum value of f(x)f(x) is 2(1)+2=02(-1) + 2 = 0.

3. Final Answer

(9) f(x)=3sin2xcos2x+2f(x) = \sqrt{3} \sin 2x - \cos 2x + 2
(10) Maximum value is 4 and minimum value is 0.

Related problems in "Algebra"

The problem states that $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $T = \begin{pmatrix} -3 \\ 1 \en...

VectorsMatrix OperationsVector Components
2025/6/24

We are given two matrices $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $T = \begin{pmatrix} -3 \\ ...

Matrix MultiplicationLinear TransformationsVectors
2025/6/24

We are given two functions $f(x) = \frac{2x+7}{7}$ and $g(x) = \frac{3x-6}{6}$. We need to find $g(6...

FunctionsInverse FunctionsFunction Evaluation
2025/6/24

The problem asks to factor the quadratic expression $2x^2 - x - 15$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/6/24

We are asked to evaluate $x^{\frac{1}{2}} = 4$. This means we need to find the value of $x$ that sat...

EquationsExponentsSquare RootsSolving Equations
2025/6/24

The problem is to solve the equation $x^2 = 3x$.

Quadratic EquationsSolving EquationsFactoring
2025/6/24

The problem asks to simplify the expression $3(x + 5) - x(x - 2)$.

Algebraic ExpressionsSimplificationPolynomials
2025/6/24

We are given 5 problems: 1. Simplify the expression $3(x+5) - x(x-2)$.

Algebraic SimplificationQuadratic EquationsSolving EquationsFactorizationFunctionsInverse Functions
2025/6/24

The problem consists of five questions. 1. Simplify $3(x+5) - x(x-2)$.

Algebraic SimplificationQuadratic EquationsSolving EquationsFactorizationFunction EvaluationInverse Functions
2025/6/24

The problem asks to graph the given quadratic functions and find the vertex and axis of symmetry for...

Quadratic FunctionsCompleting the SquareVertexAxis of SymmetryParabola
2025/6/24