The problem gives a function $f(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x$. We need to: (9) Transform $f(x)$ into the form $f(x) = a \sin 2x + b \cos 2x + c$, where $a$, $b$, and $c$ are constants. (10) Find the maximum and minimum values of $f(x)$ in the interval $0 \le x \le \pi$.
AlgebraTrigonometryTrigonometric IdentitiesDouble Angle FormulasFinding Maximum and Minimum
2025/6/24
1. Problem Description
The problem gives a function f(x)=cos2x+23cosxsinx+3sin2x. We need to:
(9) Transform f(x) into the form f(x)=asin2x+bcos2x+c, where a, b, and c are constants.
(10) Find the maximum and minimum values of f(x) in the interval 0≤x≤π.
2. Solution Steps
(9)
First, we rewrite the function using the double angle formulas.
sin2x=2sinxcosx
cos2x=cos2x−sin2x
cos2x=21+cos2x
sin2x=21−cos2x
Substitute these formulas into f(x):
f(x)=cos2x+23cosxsinx+3sin2x
f(x)=21+cos2x+3sin2x+321−cos2x
f(x)=21+21cos2x+3sin2x+23−23cos2x
f(x)=3sin2x−cos2x+2
So, we have a=3, b=−1, and c=2. Therefore,
f(x)=3sin2x−cos2x+2
(10)
Now, we need to find the maximum and minimum values of f(x)=3sin2x−cos2x+2 for 0≤x≤π.
We can rewrite 3sin2x−cos2x in the form Rsin(2x+α).
R=(3)2+(−1)2=3+1=4=2.
So, f(x)=2sin(2x+α)+2, where cosα=23 and sinα=−21. Thus, α=−6π.
Then, f(x)=2sin(2x−6π)+2.
Since 0≤x≤π, we have 0≤2x≤2π.
Therefore, −6π≤2x−6π≤2π−6π=611π.
The maximum value of sin(2x−6π) is 1, which occurs when 2x−6π=2π, so 2x=2π+6π=64π=32π, thus x=3π.
The maximum value of f(x) is 2(1)+2=4.
The minimum value of sin(2x−6π) is -1, which occurs when 2x−6π=23π, so 2x=23π+6π=610π=35π, thus x=65π.