First, we rewrite the expression inside the limit. We can rewrite the numerator and denominator as products:
Numerator: nn∏k=1n(x+kn) Denominator: n!∏k=1n(x2+k2n2) f(x)=limn→∞[n!∏k=1n(x2+k2n2)nn∏k=1n(x+kn)]nx Take the natural logarithm of both sides:
lnf(x)=limn→∞nxln[n!∏k=1n(x2+k2n2)nn∏k=1n(x+kn)] lnf(x)=limn→∞nx[ln(nn)+∑k=1nln(x+kn)−ln(n!)−∑k=1nln(x2+k2n2)] Using Stirling's approximation, ln(n!)≈nln(n)−n lnf(x)=limn→∞nx[nln(n)+∑k=1nln(x+kn)−(nln(n)−n)−∑k=1nln(x2+k2n2)] lnf(x)=limn→∞nx[n+∑k=1nln(x+kn)−∑k=1nln(x2+k2n2)] lnf(x)=limn→∞nx[n+∑k=1nln(x2+k2n2x+kn)] lnf(x)=limn→∞nx[n+∑k=1nln(n2x2+k21nx+k1)] lnf(x)=limn→∞x+nx∑k=1nln(n2x2+k21nx+k1) lnf(x)=x+x∫01ln(0+x20+1/x1)dx lnf(x)=x+x∫01ln(1/x21/x1)dx Then
lnf(x)=x+x∫01ln(1/x21/x1)dx=x+x∫01ln(x2)dx Therefore ∫k=1nlndk lnf(x)=x+∫1nlndk lnf(x)=x−xln(x) ∫01ln(x1)−x(∫01x1)dx lnf(x)=x Thus f(x)=ex. f′(x)=ex. (A) f(1/2)=e1/2≥f(1)=e1 is false. (B) f(1/3)=e1/3≤f(2/3)=e2/3 is true. (C) f′(2)=e2≤0 is false. (D) f(3)f′(3)=e3e3=1 and f(2)f′(2)=e2e2=1. So f(3)f′(3)≥f(2)f′(2) is true.