We are given a limit definition of a function $f(x)$ as $n$ approaches infinity and asked to determine which of the given statements regarding $f(x)$ and its derivative are true. The given function is $f(x) = \lim_{n\to\infty} \left[ \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac{n^2}{4})...(x^2+\frac{n^2}{n^2})} \right]^{\frac{x}{n}}$

AnalysisLimitsFunctionsDerivativesStirling's ApproximationIntegration
2025/6/25

1. Problem Description

We are given a limit definition of a function f(x)f(x) as nn approaches infinity and asked to determine which of the given statements regarding f(x)f(x) and its derivative are true. The given function is
f(x)=limn[nn(x+n)(x+n2)...(x+nn)n!(x2+n2)(x2+n24)...(x2+n2n2)]xnf(x) = \lim_{n\to\infty} \left[ \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac{n^2}{4})...(x^2+\frac{n^2}{n^2})} \right]^{\frac{x}{n}}

2. Solution Steps

First, we rewrite the expression inside the limit. We can rewrite the numerator and denominator as products:
Numerator: nnk=1n(x+nk)n^n \prod_{k=1}^{n} (x + \frac{n}{k})
Denominator: n!k=1n(x2+n2k2)n! \prod_{k=1}^{n} (x^2 + \frac{n^2}{k^2})
f(x)=limn[nnk=1n(x+nk)n!k=1n(x2+n2k2)]xnf(x) = \lim_{n\to\infty} \left[ \frac{n^n \prod_{k=1}^{n} (x + \frac{n}{k})}{n! \prod_{k=1}^{n} (x^2 + \frac{n^2}{k^2})} \right]^{\frac{x}{n}}
Take the natural logarithm of both sides:
lnf(x)=limnxnln[nnk=1n(x+nk)n!k=1n(x2+n2k2)]\ln f(x) = \lim_{n\to\infty} \frac{x}{n} \ln \left[ \frac{n^n \prod_{k=1}^{n} (x + \frac{n}{k})}{n! \prod_{k=1}^{n} (x^2 + \frac{n^2}{k^2})} \right]
lnf(x)=limnxn[ln(nn)+k=1nln(x+nk)ln(n!)k=1nln(x2+n2k2)]\ln f(x) = \lim_{n\to\infty} \frac{x}{n} \left[ \ln(n^n) + \sum_{k=1}^{n} \ln(x + \frac{n}{k}) - \ln(n!) - \sum_{k=1}^{n} \ln(x^2 + \frac{n^2}{k^2}) \right]
Using Stirling's approximation, ln(n!)nln(n)n\ln(n!) \approx n\ln(n) - n
lnf(x)=limnxn[nln(n)+k=1nln(x+nk)(nln(n)n)k=1nln(x2+n2k2)]\ln f(x) = \lim_{n\to\infty} \frac{x}{n} \left[ n\ln(n) + \sum_{k=1}^{n} \ln(x + \frac{n}{k}) - (n\ln(n) - n) - \sum_{k=1}^{n} \ln(x^2 + \frac{n^2}{k^2}) \right]
lnf(x)=limnxn[n+k=1nln(x+nk)k=1nln(x2+n2k2)]\ln f(x) = \lim_{n\to\infty} \frac{x}{n} \left[ n + \sum_{k=1}^{n} \ln(x + \frac{n}{k}) - \sum_{k=1}^{n} \ln(x^2 + \frac{n^2}{k^2}) \right]
lnf(x)=limnxn[n+k=1nln(x+nkx2+n2k2)]\ln f(x) = \lim_{n\to\infty} \frac{x}{n} \left[ n + \sum_{k=1}^{n} \ln(\frac{x + \frac{n}{k}}{x^2 + \frac{n^2}{k^2}}) \right]
lnf(x)=limnxn[n+k=1nln(xn+1kx2n2+1k2)]\ln f(x) = \lim_{n\to\infty} \frac{x}{n} \left[ n + \sum_{k=1}^{n} \ln(\frac{\frac{x}{n} + \frac{1}{k}}{\frac{x^2}{n^2} + \frac{1}{k^2}}) \right]
lnf(x)=limnx+xnk=1nln(xn+1kx2n2+1k2)\ln f(x) = \lim_{n\to\infty} x + \frac{x}{n} \sum_{k=1}^{n} \ln(\frac{\frac{x}{n} + \frac{1}{k}}{\frac{x^2}{n^2} + \frac{1}{k^2}})
lnf(x)=x+x01ln(0+1/x10+x2)dx\ln f(x) = x + x\int_{0}^{1} \ln(\frac{0+1/x^1}{0 + x^2}) dx
lnf(x)=x+x01ln(1/x11/x2)dx\ln f(x) = x + x\int_0^1 \ln(\frac{1/x^1}{1/x^2})dx
Then
lnf(x)=x+x01ln(1/x11/x2)dx=x+x01ln(x2)dx\ln f(x) = x + x\int_{0}^{1} \ln(\frac{1/x^1}{1/x^2})dx = x + x \int_0^1 \ln(x^2)dx
Therefore k=1nlndk\int_{k=1}^{n} \ln{dk}
lnf(x)=x+1nlndk\ln f(x) = x + \int_{1}^{n} \ln{dk}
lnf(x)=xxln(x)\ln f(x) = x - x\ln(x)
01ln(1x)x(011x)dx\int_0^1 \ln(\frac{1}{x}) - x(\int_0^1 \frac{1}{x}) dx
lnf(x)=x\ln f(x) = x
Thus f(x)=exf(x) = e^x.
f(x)=exf'(x) = e^x.
(A) f(1/2)=e1/2f(1)=e1f(1/2) = e^{1/2} \ge f(1) = e^1 is false.
(B) f(1/3)=e1/3f(2/3)=e2/3f(1/3) = e^{1/3} \le f(2/3) = e^{2/3} is true.
(C) f(2)=e20f'(2) = e^2 \le 0 is false.
(D) f(3)f(3)=e3e3=1\frac{f'(3)}{f(3)} = \frac{e^3}{e^3} = 1 and f(2)f(2)=e2e2=1\frac{f'(2)}{f(2)} = \frac{e^2}{e^2} = 1. So f(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)} \ge \frac{f'(2)}{f(2)} is true.

3. Final Answer

(B) f(13)f(23)f(\frac{1}{3}) \le f(\frac{2}{3})
(D) f(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)} \ge \frac{f'(2)}{f(2)}

Related problems in "Analysis"

The problem asks to find the following limits of the function $f(x)$ based on the given graph: $\lim...

LimitsFunctionsGraphical AnalysisAsymptotes
2025/6/28

The problem asks us to analyze the graph of the function $f(x)$, which is composed of a parabola, a ...

LimitsFunctionsPiecewise FunctionsAsymptotes
2025/6/28

The problem asks us to evaluate four limits based on the provided graph of a function $f(x)$. The li...

LimitsFunctionsGraph AnalysisOne-sided Limits
2025/6/28

The problem asks us to evaluate three limits, $A$, $B$, and $C$. $A = \lim_{x\to1} \frac{1+x}{\sqrt{...

LimitsCalculusIndeterminate FormsRationalizationL'Hopital's Rule (implied)
2025/6/28

The problem asks us to find the surface area of the solid generated by revolving the curve $y = x^{3...

CalculusSurface AreaSolid of RevolutionIntegrationDefinite IntegralApproximation
2025/6/28

The problem asks to find the volume of the solid generated by revolving the region bounded by the cu...

CalculusVolume of RevolutionIntegrationWasher Method
2025/6/28

The problem provides a function $f(x) = -x + 4 + \ln(\frac{x+1}{x-1})$ defined on the interval $(1, ...

LimitsDerivativesAsymptotesFunction AnalysisTangent LinesLogarithmic Functions
2025/6/28

Find the derivative of the function $g(x) = x^2 - 8\ln{x} - 1$.

CalculusDifferentiationDerivativesLogarithmic Functions
2025/6/28

We are asked to evaluate two integrals using the given substitutions. The integrals are: (a) $\int \...

IntegrationSubstitutionDefinite IntegralsIndefinite IntegralsCalculus
2025/6/27

We are given a set of statements about basic concepts in calculus and asked to determine if they are...

CalculusDerivativesAntiderivativesLocal ExtremaIncreasing/Decreasing FunctionsDifferentiabilityCritical PointsMean Value Theorem
2025/6/27