Given a regular hexagon $ABCDEF$, where $\vec{AB} = \vec{p}$ and $\vec{BC} = \vec{q}$, express the vectors $\vec{CD}, \vec{DE}, \vec{EF}, \vec{FA}, \vec{AD}, \vec{EA}, \vec{AC}$ in terms of $\vec{p}$ and $\vec{q}$.

GeometryVectorsGeometryHexagonVector Addition
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, where AB=p\vec{AB} = \vec{p} and BC=q\vec{BC} = \vec{q}, express the vectors CD,DE,EF,FA,AD,EA,AC\vec{CD}, \vec{DE}, \vec{EF}, \vec{FA}, \vec{AD}, \vec{EA}, \vec{AC} in terms of p\vec{p} and q\vec{q}.

2. Solution Steps

In a regular hexagon, all sides have the same length, and all interior angles are 120120^\circ.
Also, note that AB+BC+CD+DE+EF+FA=0\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA} = \vec{0}.
CD\vec{CD}: In a regular hexagon, CD\vec{CD} has the same length as AB\vec{AB} and AB\vec{AB} rotated by 120120^\circ to get BC\vec{BC}, so CD\vec{CD} is p-\vec{p}.
DE\vec{DE}: DE\vec{DE} is parallel to CB\vec{CB} with the same length, so DE=q\vec{DE} = -\vec{q}.
EF\vec{EF}: EF\vec{EF} is parallel to BA\vec{BA} with the same length, so EF=p\vec{EF} = -\vec{p}.
FA\vec{FA}: FA\vec{FA} is parallel to CB\vec{CB} with the same length, so FA=q\vec{FA} = -\vec{q}.
AD\vec{AD}: AD=AB+BC+CD=p+q+CD=p+q+(ACAD)\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + \vec{CD} = \vec{p} + \vec{q} + (\vec{AC}-\vec{AD}). Consider the center OO of the hexagon.
Then AD=2BC=2q\vec{AD} = 2\vec{BC} = 2\vec{q}.
EA\vec{EA}: EA=(FA+EF+DE)=p+qp=CDDEEF=(pq+p)=qp\vec{EA} = -(\vec{FA} + \vec{EF} + \vec{DE}) = \vec{p} + \vec{q} - \vec{p} = -\vec{CD} - \vec{DE} - \vec{EF} = -(-\vec{p} - \vec{q} + \vec{p}) = \vec{q} - \vec{p}. Since CD=BA=p\vec{CD} = \vec{BA}=-\vec{p} and DE=BC=q\vec{DE} = -\vec{BC} = -\vec{q}, then by symmetry we must have EA=qp\vec{EA} = \vec{q} - \vec{p}.
EA=DA=AD=2BC=AD\vec{EA} = \vec{DA} = -\vec{AD} = -2\vec{BC}= -\vec{AD}. AD=p+qp=p+BCp=BC\vec{AD}=\vec{p} + \vec{q} -\vec{p} = \vec{p} + \vec{BC} - p = \vec{BC}. EA=BA=qp\vec{EA}=\vec{BA}= q-p.
EA=FA+FE=q+p\vec{EA} = \vec{FA} + \vec{FE} = -\vec{q} + \vec{p}. CD=BA=p\vec{CD} = \vec{BA}=-\vec{p} and DE=BC=q\vec{DE} = -\vec{BC} = -\vec{q}. Then EA=BCAB=qp\vec{EA} = \vec{BC} - \vec{AB} = \vec{q}-\vec{p}.
AC\vec{AC}: AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}.

3. Final Answer

CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=q\vec{FA} = -\vec{q}
AD=2q\vec{AD} = 2\vec{q}
EA=qp\vec{EA} = \vec{q}-\vec{p}
AC=p+q\vec{AC} = \vec{p}+\vec{q}

Related problems in "Geometry"

We are given the area of a square as 81 square meters, and we are asked to find the side length of t...

AreaSquareSide LengthGeometry
2025/7/2

We are asked to find the area of a square, given that its side length is $0.7$ meters. We are asked ...

AreaSquareUnit Conversion
2025/7/2

We are given a shaded shape on a grid. Each square on the grid has a side length of 1 cm. We are ask...

AreaApproximationGridShapes
2025/7/2

The problem states that $Z$ is the centroid of triangle $TRS$. Given that $TO = 7b + 5$, $OR = 13b -...

CentroidTriangleMidpointAlgebraic EquationsLine Segments
2025/7/1

We are given that $m\angle ACT = 15a - 8$ and $m\angle ACB = 74$. Also, S is the incenter of $\trian...

Angle BisectorIncenterTriangleAnglesAlgebraic Manipulation
2025/7/1

$S$ is the circumcenter of triangle $ABC$. $CP = 7x - 1$ and $PB = 6x + 3$. Find the value of $x$ an...

GeometryTriangleCircumcenterMidpointAlgebraic Equations
2025/7/1

We are given a triangle $ABC$ and a point $S$ which is the circumcenter. $CP = 7x - 1$ and $PB = 6x ...

TriangleCircumcenterLine SegmentsAlgebraic Equations
2025/7/1

The problem provides the radius of a circle as $21.5$ cm and a central angle as $316$ degrees. We ne...

CircleArc LengthCircumferenceAngle Measurement
2025/7/1

The problem provides the radius of a circle, $r = 21.5$ cm, and the angle of a sector, $\theta = 316...

CircleSectorArc LengthRadiansAngle Conversion
2025/7/1

The problem asks us to locate the points D, F, E, and G on the graph based on their relative positio...

Coordinate GeometryPointsSpatial ReasoningVisual Estimation
2025/6/30