Problem 1:
Distance from origin p = 4 p = 4 p = 4 , angle w = 60 ∘ w = 60^{\circ} w = 6 0 ∘ . The normal form of the line is given by:
x cos ( w ) + y sin ( w ) − p = 0 x \cos(w) + y \sin(w) - p = 0 x cos ( w ) + y sin ( w ) − p = 0 Substituting the values:
x cos ( 60 ∘ ) + y sin ( 60 ∘ ) − 4 = 0 x \cos(60^{\circ}) + y \sin(60^{\circ}) - 4 = 0 x cos ( 6 0 ∘ ) + y sin ( 6 0 ∘ ) − 4 = 0 x ( 1 2 ) + y ( 3 2 ) − 4 = 0 x (\frac{1}{2}) + y (\frac{\sqrt{3}}{2}) - 4 = 0 x ( 2 1 ) + y ( 2 3 ) − 4 = 0 Multiplying by 2, we get:
x + 3 y − 8 = 0 x + \sqrt{3}y - 8 = 0 x + 3 y − 8 = 0
Problem 2:
Distance from origin p = 6 p = 6 p = 6 , angle w = 5 π 6 w = \frac{5\pi}{6} w = 6 5 π . The normal form of the line is given by:
x cos ( w ) + y sin ( w ) − p = 0 x \cos(w) + y \sin(w) - p = 0 x cos ( w ) + y sin ( w ) − p = 0 Substituting the values:
x cos ( 5 π 6 ) + y sin ( 5 π 6 ) − 6 = 0 x \cos(\frac{5\pi}{6}) + y \sin(\frac{5\pi}{6}) - 6 = 0 x cos ( 6 5 π ) + y sin ( 6 5 π ) − 6 = 0 x ( − 3 2 ) + y ( 1 2 ) − 6 = 0 x (-\frac{\sqrt{3}}{2}) + y (\frac{1}{2}) - 6 = 0 x ( − 2 3 ) + y ( 2 1 ) − 6 = 0 Multiplying by 2, we get:
− 3 x + y − 12 = 0 -\sqrt{3}x + y - 12 = 0 − 3 x + y − 12 = 0 or
3 x − y + 12 = 0 \sqrt{3}x - y + 12 = 0 3 x − y + 12 = 0
Problem 3:
Distance from origin p = 2 p = 2 p = 2 , angle w = 30 ∘ w = 30^{\circ} w = 3 0 ∘ . The normal form of the line is given by:
x cos ( w ) + y sin ( w ) − p = 0 x \cos(w) + y \sin(w) - p = 0 x cos ( w ) + y sin ( w ) − p = 0 Substituting the values:
x cos ( 30 ∘ ) + y sin ( 30 ∘ ) − 2 = 0 x \cos(30^{\circ}) + y \sin(30^{\circ}) - 2 = 0 x cos ( 3 0 ∘ ) + y sin ( 3 0 ∘ ) − 2 = 0 x ( 3 2 ) + y ( 1 2 ) − 2 = 0 x (\frac{\sqrt{3}}{2}) + y (\frac{1}{2}) - 2 = 0 x ( 2 3 ) + y ( 2 1 ) − 2 = 0 Multiplying by 2, we get:
3 x + y − 4 = 0 \sqrt{3}x + y - 4 = 0 3 x + y − 4 = 0
Problem 4:
Distance from origin p = 5 p = 5 p = 5 , angle w = 7 π 6 w = \frac{7\pi}{6} w = 6 7 π . The normal form of the line is given by:
x cos ( w ) + y sin ( w ) − p = 0 x \cos(w) + y \sin(w) - p = 0 x cos ( w ) + y sin ( w ) − p = 0 Substituting the values:
x cos ( 7 π 6 ) + y sin ( 7 π 6 ) − 5 = 0 x \cos(\frac{7\pi}{6}) + y \sin(\frac{7\pi}{6}) - 5 = 0 x cos ( 6 7 π ) + y sin ( 6 7 π ) − 5 = 0 x ( − 3 2 ) + y ( − 1 2 ) − 5 = 0 x (-\frac{\sqrt{3}}{2}) + y (-\frac{1}{2}) - 5 = 0 x ( − 2 3 ) + y ( − 2 1 ) − 5 = 0 Multiplying by 2, we get:
− 3 x − y − 10 = 0 -\sqrt{3}x - y - 10 = 0 − 3 x − y − 10 = 0 or
3 x + y + 10 = 0 \sqrt{3}x + y + 10 = 0 3 x + y + 10 = 0
Problem 5:
x cos ( 45 ∘ ) − y sin ( 45 ∘ ) + 2 = 0 x \cos(45^{\circ}) - y \sin(45^{\circ}) + 2 = 0 x cos ( 4 5 ∘ ) − y sin ( 4 5 ∘ ) + 2 = 0 Substituting the values:
x ( 2 2 ) − y ( 2 2 ) + 2 = 0 x (\frac{\sqrt{2}}{2}) - y (\frac{\sqrt{2}}{2}) + 2 = 0 x ( 2 2 ) − y ( 2 2 ) + 2 = 0 Multiplying by 2 2 \frac{2}{\sqrt{2}} 2 2 , we get: x − y + 2 2 = 0 x - y + 2\sqrt{2} = 0 x − y + 2 2 = 0
Problem 6:
x cos ( 225 ∘ ) + y sin ( 225 ∘ ) − 2 = 0 x \cos(225^{\circ}) + y \sin(225^{\circ}) - \sqrt{2} = 0 x cos ( 22 5 ∘ ) + y sin ( 22 5 ∘ ) − 2 = 0 Substituting the values:
x ( − 2 2 ) + y ( − 2 2 ) − 2 = 0 x (-\frac{\sqrt{2}}{2}) + y (-\frac{\sqrt{2}}{2}) - \sqrt{2} = 0 x ( − 2 2 ) + y ( − 2 2 ) − 2 = 0 Multiplying by − 2 2 -\frac{2}{\sqrt{2}} − 2 2 , we get: x + y + 2 = 0 x + y + 2 = 0 x + y + 2 = 0
Problem 7:
x cos ( 2 π 3 ) − y sin ( 2 π 3 ) − 3 = 0 x \cos(\frac{2\pi}{3}) - y \sin(\frac{2\pi}{3}) - 3 = 0 x cos ( 3 2 π ) − y sin ( 3 2 π ) − 3 = 0 Substituting the values:
x ( − 1 2 ) − y ( 3 2 ) − 3 = 0 x (-\frac{1}{2}) - y (\frac{\sqrt{3}}{2}) - 3 = 0 x ( − 2 1 ) − y ( 2 3 ) − 3 = 0 Multiplying by -2, we get:
x + 3 y + 6 = 0 x + \sqrt{3}y + 6 = 0 x + 3 y + 6 = 0
Problem 8:
x cos ( 5 π 4 ) − y sin ( 5 π 4 ) + 1 = 0 x \cos(\frac{5\pi}{4}) - y \sin(\frac{5\pi}{4}) + 1 = 0 x cos ( 4 5 π ) − y sin ( 4 5 π ) + 1 = 0 Substituting the values:
x ( − 2 2 ) − y ( − − 2 2 ) + 1 = 0 x (-\frac{\sqrt{2}}{2}) - y (-\frac{-\sqrt{2}}{2}) + 1 = 0 x ( − 2 2 ) − y ( − 2 − 2 ) + 1 = 0 x ( − 2 2 ) − y ( 2 2 ) + 1 = 0 x (-\frac{\sqrt{2}}{2}) - y (\frac{\sqrt{2}}{2}) + 1 = 0 x ( − 2 2 ) − y ( 2 2 ) + 1 = 0 Multiplying by − 2 2 -\frac{2}{\sqrt{2}} − 2 2 , we get: x + y − 2 = 0 x + y - \sqrt{2} = 0 x + y − 2 = 0