次の和 $S$ を求めよ。 $S = 1 \cdot 1 + 4 \cdot 2 + 7 \cdot 2^2 + \cdots + (3n-2) \cdot 2^{n-1}$代数学数列級数等比数列和の計算2025/7/11. 問題の内容次の和 SSS を求めよ。S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−1S = 1 \cdot 1 + 4 \cdot 2 + 7 \cdot 2^2 + \cdots + (3n-2) \cdot 2^{n-1}S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−12. 解き方の手順まず、SSS を書き出す。S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−1S = 1 \cdot 1 + 4 \cdot 2 + 7 \cdot 2^2 + \cdots + (3n-2) \cdot 2^{n-1}S=1⋅1+4⋅2+7⋅22+⋯+(3n−2)⋅2n−1次に、2S2S2S を書き出す。2S=1⋅2+4⋅22+7⋅23+⋯+(3n−2)⋅2n2S = 1 \cdot 2 + 4 \cdot 2^2 + 7 \cdot 2^3 + \cdots + (3n-2) \cdot 2^{n}2S=1⋅2+4⋅22+7⋅23+⋯+(3n−2)⋅2nS−2SS-2SS−2S を計算する。S−2S=1⋅1+(4−1)⋅2+(7−4)⋅22+⋯+(3n−2−(3n−5))⋅2n−1−(3n−2)⋅2nS - 2S = 1 \cdot 1 + (4-1) \cdot 2 + (7-4) \cdot 2^2 + \cdots + (3n-2-(3n-5)) \cdot 2^{n-1} - (3n-2) \cdot 2^nS−2S=1⋅1+(4−1)⋅2+(7−4)⋅22+⋯+(3n−2−(3n−5))⋅2n−1−(3n−2)⋅2n−S=1+3⋅2+3⋅22+⋯+3⋅2n−1−(3n−2)⋅2n-S = 1 + 3 \cdot 2 + 3 \cdot 2^2 + \cdots + 3 \cdot 2^{n-1} - (3n-2) \cdot 2^n−S=1+3⋅2+3⋅22+⋯+3⋅2n−1−(3n−2)⋅2n−S=1+3(2+22+⋯+2n−1)−(3n−2)⋅2n-S = 1 + 3(2 + 2^2 + \cdots + 2^{n-1}) - (3n-2) \cdot 2^n−S=1+3(2+22+⋯+2n−1)−(3n−2)⋅2n等比数列の和の公式を用いる。2+22+⋯+2n−1=2(2n−1−1)2−1=2n−22 + 2^2 + \cdots + 2^{n-1} = \frac{2(2^{n-1}-1)}{2-1} = 2^n - 22+22+⋯+2n−1=2−12(2n−1−1)=2n−2−S=1+3(2n−2)−(3n−2)⋅2n-S = 1 + 3(2^n - 2) - (3n-2) \cdot 2^n−S=1+3(2n−2)−(3n−2)⋅2n−S=1+3⋅2n−6−(3n−2)⋅2n-S = 1 + 3 \cdot 2^n - 6 - (3n-2) \cdot 2^n−S=1+3⋅2n−6−(3n−2)⋅2n−S=−5+3⋅2n−(3n−2)⋅2n-S = -5 + 3 \cdot 2^n - (3n-2) \cdot 2^n−S=−5+3⋅2n−(3n−2)⋅2n−S=−5+(3−(3n−2))⋅2n-S = -5 + (3 - (3n-2)) \cdot 2^n−S=−5+(3−(3n−2))⋅2n−S=−5+(5−3n)⋅2n-S = -5 + (5 - 3n) \cdot 2^n−S=−5+(5−3n)⋅2nS=5+(3n−5)⋅2nS = 5 + (3n-5) \cdot 2^nS=5+(3n−5)⋅2n3. 最終的な答えS=(3n−5)2n+5S = (3n-5)2^n + 5S=(3n−5)2n+5