次の式を計算します。 $\sqrt{5-2\sqrt{6}} - \frac{1}{\sqrt{2} + \sqrt{3}}$

代数学根号式の計算平方根有理化
2025/7/1

1. 問題の内容

次の式を計算します。
52612+3\sqrt{5-2\sqrt{6}} - \frac{1}{\sqrt{2} + \sqrt{3}}

2. 解き方の手順

まず、526\sqrt{5-2\sqrt{6}}を簡単にします。根号の中を (ab)2=a+b2ab(\sqrt{a} - \sqrt{b})^2 = a+b - 2\sqrt{ab}の形にすることを考えます。
a+b=5a+b = 5ab=6ab = 6となるa,ba, bを考えると、a=3,b=2a = 3, b = 2が見つかります。
よって、526=(32)2=32=32\sqrt{5-2\sqrt{6}} = \sqrt{(\sqrt{3} - \sqrt{2})^2} = |\sqrt{3} - \sqrt{2}| = \sqrt{3} - \sqrt{2}となります。
次に、12+3\frac{1}{\sqrt{2} + \sqrt{3}}を簡単にします。分母の有理化を行います。
12+3=12+3×2323=2323=231=32\frac{1}{\sqrt{2} + \sqrt{3}} = \frac{1}{\sqrt{2} + \sqrt{3}} \times \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}} = \frac{\sqrt{2} - \sqrt{3}}{2 - 3} = \frac{\sqrt{2} - \sqrt{3}}{-1} = \sqrt{3} - \sqrt{2}
したがって、
52612+3=(32)(32)=0\sqrt{5-2\sqrt{6}} - \frac{1}{\sqrt{2} + \sqrt{3}} = (\sqrt{3} - \sqrt{2}) - (\sqrt{3} - \sqrt{2}) = 0

3. 最終的な答え

0

「代数学」の関連問題

与えられた4つの二次関数について、グラフを書き、軸と頂点を求める。 (1) $y = x^2 - 10x + 25$ (2) $y = x^2 + 6x + 8$ (3) $y = -x^2 - 2x...

二次関数グラフ平方完成頂点
2025/7/1

二次関数のグラフが与えられた3点を通るとき、その二次関数を求めよ。問題には2つの小問があります。 (1) 3点 $(-2, 5)$, $(0, -3)$, $(3, 0)$ を通る二次関数を求める。 ...

二次関数グラフ連立方程式座標
2025/7/1

与えられた2つの2次関数について、グラフの軸と頂点を求め、グラフを描く問題です。 (1) $y = 2x^2 + 8x + 3$ (2) $y = -3x^2 + 6x - 3$

二次関数平方完成グラフ頂点
2025/7/1

与えられた2つの連立3元1次方程式を解く問題です。 (1) $a+b+c=10$, $a-b+c=2$, $a+b-c=4$ (2) $a-b+3c=1$, $3a+7b-c=8$, $2a-4b+5...

連立方程式線形代数方程式
2025/7/1

与えられた連立3元1次方程式を解きます。具体的には、以下の2つの連立方程式について、$a, b, c$の値を求めます。 (1) $a + b + c = 10$ $a - b + c = 2$ $a ...

連立方程式線形代数
2025/7/1

関数 $y = ax + b$ において、 $-1 \le x \le 2$ の範囲における $y$ の値域が $-7 \le y \le 8$ となるような定数 $a, b$ の値を求める問題です。

一次関数不等式連立方程式場合分け
2025/7/1

与えられた条件を満たす放物線(2次関数)を求める問題です。 (1) 頂点の座標と通る1点が与えられています。 (2) 軸の方程式と通る2点が与えられています。

二次関数放物線関数の決定頂点展開
2025/7/1

関数 $y = ax + b$ ($-1 \le x \le 1$)の値域が $-3 \le y \le 1$ となるような定数 $a$, $b$ の値を求める問題です。ただし、$a < 0$ としま...

一次関数連立方程式値域
2025/7/1

2つの2次関数 $y = x^2 - 4x + 1$ と $y = 2x^2 + 12x + 14$ のグラフを書き、それぞれの軸と頂点を求める問題です。

二次関数グラフ平方完成頂点
2025/7/1

与えられた2次関数 $y = 2x^2 - 4x + 5$ のグラフが、基本となる関数 $y=2x^2$ のグラフをどのように平行移動させたものか答える問題です。

二次関数平行移動平方完成グラフ
2025/7/1