The given equation is 23x+1−3(22x)+2x+1=2x. We can rewrite the terms using the properties of exponents: 23x+1=23x⋅21=2⋅(2x)3 22x=(2x)2 2x+1=2x⋅21=2⋅2x Substituting these into the equation, we have:
2(2x)3−3(2x)2+2(2x)=2x Let y=2x. Then the equation becomes: 2y3−3y2+2y=y 2y3−3y2+y=0 y(2y2−3y+1)=0 y(2y−1)(y−1)=0 So the possible values for y are y=0, y=21, and y=1. Since y=2x, we have: 2x=0, 2x=21, and 2x=1. 2x=0 has no solution, because 2x is always positive. 2x=21=2−1 implies x=−1. 2x=1=20 implies x=0. Therefore, the solutions for x are x=−1 and x=0.