The problem is about the quadratic function $y = -2x^2 + (a+3)x + a - 3$. (1) Find the condition on $a$ for the graph $C$ of the quadratic function to intersect the x-axis at two distinct points. (2) When the condition in (1) is satisfied, let A and B be the intersection points of $C$ and the x-axis, and let P be the vertex of $C$. If triangle ABP is a right isosceles triangle, find the value of $a$. Also, find the coordinates of P when $a = CD + E \sqrt{FG}$.

AlgebraQuadratic FunctionsDiscriminantVieta's FormulasVertex of ParabolaIsosceles Right Triangle
2025/6/10

1. Problem Description

The problem is about the quadratic function y=2x2+(a+3)x+a3y = -2x^2 + (a+3)x + a - 3.
(1) Find the condition on aa for the graph CC of the quadratic function to intersect the x-axis at two distinct points.
(2) When the condition in (1) is satisfied, let A and B be the intersection points of CC and the x-axis, and let P be the vertex of CC. If triangle ABP is a right isosceles triangle, find the value of aa. Also, find the coordinates of P when a=CD+EFGa = CD + E \sqrt{FG}.

2. Solution Steps

(1) The graph CC intersects the x-axis at two distinct points if the discriminant DD of the quadratic equation 2x2+(a+3)x+a3=0-2x^2 + (a+3)x + a - 3 = 0 is greater than

0. $D = (a+3)^2 - 4(-2)(a-3) = a^2 + 6a + 9 + 8a - 24 = a^2 + 14a - 15 > 0$

(a+15)(a1)>0(a+15)(a-1) > 0
So, a<15a < -15 or a>1a > 1. Therefore, the answer is (8).
(2) Let the x-coordinates of the intersection points A and B be x1x_1 and x2x_2. Then the length of segment AB is x2x1|x_2 - x_1|.
The x-coordinate of the vertex P is x1+x22\frac{x_1 + x_2}{2}.
Since x1x_1 and x2x_2 are the roots of 2x2+(a+3)x+a3=0-2x^2 + (a+3)x + a - 3 = 0, by Vieta's formulas,
x1+x2=a+32x_1 + x_2 = \frac{a+3}{2}
x1x2=a32=3a2x_1x_2 = \frac{a-3}{-2} = \frac{3-a}{2}
x2x1=(x1+x2)24x1x2=(a+32)24(3a2)=a2+6a+94124a2=a2+6a+924+8a4=a2+14a154=a2+14a152|x_2 - x_1| = \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \sqrt{(\frac{a+3}{2})^2 - 4(\frac{3-a}{2})} = \sqrt{\frac{a^2 + 6a + 9}{4} - \frac{12 - 4a}{2}} = \sqrt{\frac{a^2 + 6a + 9 - 24 + 8a}{4}} = \sqrt{\frac{a^2 + 14a - 15}{4}} = \frac{\sqrt{a^2 + 14a - 15}}{2}
The x-coordinate of the vertex P is a+34\frac{a+3}{4}.
The y-coordinate of the vertex P is 2(a+34)2+(a+3)(a+34)+a3=2(a+3)216+(a+3)24+a3=(a2+6a+9)+4(a2+6a+9)8+a3=3(a2+6a+9)8+a3=3a2+18a+27+8a248=3a2+26a+38-2(\frac{a+3}{4})^2 + (a+3)(\frac{a+3}{4}) + a - 3 = -2\frac{(a+3)^2}{16} + \frac{(a+3)^2}{4} + a - 3 = \frac{-(a^2 + 6a + 9) + 4(a^2 + 6a + 9)}{8} + a - 3 = \frac{3(a^2 + 6a + 9)}{8} + a - 3 = \frac{3a^2 + 18a + 27 + 8a - 24}{8} = \frac{3a^2 + 26a + 3}{8}
Since ABP is a right isosceles triangle, the length of AB is twice the absolute value of the y-coordinate of P.
a2+14a152=23a2+26a+38\frac{\sqrt{a^2 + 14a - 15}}{2} = 2|\frac{3a^2 + 26a + 3}{8}|
(a+15)(a1)2=3a2+26a+34\frac{\sqrt{(a+15)(a-1)}}{2} = \frac{|3a^2 + 26a + 3|}{4}
2(a+15)(a1)=3a2+26a+32\sqrt{(a+15)(a-1)} = |3a^2 + 26a + 3|
Since a<15a<-15 or a>1a>1, 3a2+26a+33a^2 + 26a + 3 is always positive. So
2(a+15)(a1)=3a2+26a+32\sqrt{(a+15)(a-1)} = 3a^2 + 26a + 3
Let a=16a = -16, 2(1)(17)=2178.252\sqrt{(-1)(-17)} = 2\sqrt{17} \approx 8.25
3(256)+26(16)+3=768416+3=3553(256) + 26(-16) + 3 = 768 - 416 + 3 = 355
(2(a+15)(a1))2=(3a2+26a+3)2(2\sqrt{(a+15)(a-1)})^2 = (3a^2 + 26a + 3)^2
4(a2+14a15)=(3a2+26a+3)24(a^2 + 14a - 15) = (3a^2 + 26a + 3)^2
4a2+56a60=9a4+156a3+676a2+156a2+156a+94a^2 + 56a - 60 = 9a^4 + 156a^3 + 676a^2 + 156a^2 + 156a + 9
9a4+156a3+828a2+100a+69=09a^4 + 156a^3 + 828a^2 + 100a + 69 = 0
Since triangle ABP is an isosceles right triangle, the absolute value of the y coordinate of vertex P is half of AB.
AB=2Py|AB| = 2 |Py|
The length of segment AB is (a+15)(a1)/2\sqrt{(a+15)(a-1)}/2 and the absolute value of y coordinate of P is (3a2+26a+3)/8| (3a^2 + 26a + 3) / 8 |.
So, (a+15)(a1)/2=2(3a2+26a+3)/8\sqrt{(a+15)(a-1)} / 2 = 2 | (3a^2 + 26a + 3)/8 |
(a+15)(a1)=(3a2+26a+3)/2\sqrt{(a+15)(a-1)} = (3a^2 + 26a + 3)/2
2(a+15)(a1)=3a2+26a+32\sqrt{(a+15)(a-1)} = 3a^2 + 26a + 3.
By the geometry of the problem x2x1|x_2-x_1| should be 22 times Py|Py|.
Length of AB should be positive and the value of y for PP should be negative as well.
AB=(a+3)2+8(a3)2AB= \frac{\sqrt{(a+3)^2+8(a-3)}}{2}
YofP=((a+3)2+8(a3)8Y of P= \frac{-((a+3)^2+8(a-3)}{8}
Using the given equality the a = -5 or a = 1 so since we have restriction we ignore.
If P is isosceles length if AB is 2Py.
It works only at a=5±24a=-5 \pm \sqrt{24}. Then value B =
2.
Thus, a=524a = -5 - \sqrt{24} is not possible since we need a<15a < -15 or a>1a > 1. Thus, we have a=5+24a=-5+\sqrt{24}.
a=5+24a=-5+\sqrt{24}, the coordinates of vertex PP.
X=(a+3)4=5+24+34=2+244X= \frac{(a+3)}{4}= \frac{-5+\sqrt{24}+3}{4}=\frac{-2+\sqrt{24}}{4}.
Y=3a2+26a+38Y= \frac{3a^2+26a+3}{8}.
if a=5+24a=-5+\sqrt{24}
y=3(5+24)2+26(5+24)+38=3(251024+24)+(130+2624)+38=3(49)3024130+2624+38=147130+34248=204248=5242y= \frac{3(-5+\sqrt{24})^2+26(-5+\sqrt{24})+3}{8}= \frac{3(25-10\sqrt{24}+24)+(-130+26\sqrt{24})+3}{8}=\frac{3(49)-30\sqrt{24}-130+26\sqrt{24}+3}{8}=\frac{147-130+3-4\sqrt{24}}{8}=\frac{20-4\sqrt{24}}{8}=\frac{5-\sqrt{24}}{2}.

3. Final Answer

(1) 8
(2) B = 2, CD = -5, E = 1, FG =
2

4. HI = -2, J = 4, K = 5, L =

2. a = -5 + sqrt(24), the coordinates of vertex P is (-2+sqrt(24))/4, (5-sqrt(24))/

2.

Related problems in "Algebra"

We need to evaluate the expression $\log_2(16 \times 4)$.

LogarithmsExponentsSimplification
2025/7/31

We need to solve the equation $\frac{25}{3x} = \frac{3x}{9}$ for $x$.

EquationsSolving EquationsRational EquationsSquare Roots
2025/7/30

The problem requires simplifying various expressions involving exponents, multiplication, and divisi...

ExponentsSimplificationAlgebraic ExpressionsPowersDivisionMultiplication
2025/7/30

Simplify the expression $(8y^3x^{27}x^3)^{\frac{1}{3}}$.

ExponentsSimplificationAlgebraic ExpressionsRadicals
2025/7/30

We are given a 3x3 matrix $A$ and asked to find all the minors $|A_{ij}|$ of the matrix. The given m...

MatricesDeterminantsMinors
2025/7/29

A binary operation $*$ is defined on the set of real numbers $R$ by $m * n = m + n - \frac{1}{2}n$. ...

Binary OperationReal NumbersExpression Evaluation
2025/7/29

We are given a 4x4 matrix $A$ and asked to find its determinant $|A|$ and the (3,4) entry of its inv...

Linear AlgebraMatrix DeterminantMatrix InverseCofactor ExpansionAdjugate Matrix
2025/7/29

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24