We need to evaluate the expression $\log_2(16 \times 4)$.

AlgebraLogarithmsExponentsSimplification
2025/7/31

1. Problem Description

We need to evaluate the expression log2(16×4)\log_2(16 \times 4).

2. Solution Steps

First, we simplify the argument of the logarithm:
16×4=6416 \times 4 = 64
Now, we have log2(64)\log_2(64). We want to find what power of 2 gives us
6

4. We can write 64 as a power of 2:

64=2664 = 2^6
Therefore,
log2(64)=log2(26)\log_2(64) = \log_2(2^6)
Using the logarithm property loga(ax)=x\log_a(a^x) = x, we have:
log2(26)=6\log_2(2^6) = 6

3. Final Answer

6