The problem is to simplify the expression $(\frac{c^7}{-9d^4})^2$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/7/31

1. Problem Description

The problem is to simplify the expression (c79d4)2(\frac{c^7}{-9d^4})^2.

2. Solution Steps

To simplify the expression, we need to apply the power of a quotient rule: (ab)n=anbn(\frac{a}{b})^n = \frac{a^n}{b^n}.
Applying this rule, we have:
(c79d4)2=(c7)2(9d4)2(\frac{c^7}{-9d^4})^2 = \frac{(c^7)^2}{(-9d^4)^2}
Next, we apply the power of a power rule: (am)n=amn(a^m)^n = a^{m \cdot n}.
(c7)2=c72=c14(c^7)^2 = c^{7 \cdot 2} = c^{14}
Now, let's simplify the denominator.
(9d4)2=(9)2(d4)2=81d42=81d8(-9d^4)^2 = (-9)^2 \cdot (d^4)^2 = 81 \cdot d^{4 \cdot 2} = 81d^8
Therefore, the simplified expression is:
c1481d8\frac{c^{14}}{81d^8}

3. Final Answer

c1481d8\frac{c^{14}}{81d^8}