Simplify the expression $\left(\frac{p^3}{5q}\right)^3$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/7/31

1. Problem Description

Simplify the expression (p35q)3\left(\frac{p^3}{5q}\right)^3.

2. Solution Steps

We need to simplify the given expression. We use the property of exponents that states (ab)n=anbn\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} and (am)n=amn(a^m)^n = a^{mn}.
(p35q)3=(p3)3(5q)3\left(\frac{p^3}{5q}\right)^3 = \frac{(p^3)^3}{(5q)^3}
Now, we simplify the numerator:
(p3)3=p3×3=p9(p^3)^3 = p^{3 \times 3} = p^9
Next, we simplify the denominator:
(5q)3=53q3=125q3(5q)^3 = 5^3 \cdot q^3 = 125q^3
Therefore, the simplified expression is:
p9125q3\frac{p^9}{125q^3}

3. Final Answer

p9125q3\frac{p^9}{125q^3}

Related problems in "Algebra"