The problem asks us to simplify the expression $\left(\frac{-a}{b^2}\right)^3$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/7/31

1. Problem Description

The problem asks us to simplify the expression (ab2)3\left(\frac{-a}{b^2}\right)^3.

2. Solution Steps

To simplify the expression, we need to raise both the numerator and the denominator to the power of
3.
(xy)n=xnyn\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}
Applying this rule, we get
(ab2)3=(a)3(b2)3\left(\frac{-a}{b^2}\right)^3 = \frac{(-a)^3}{(b^2)^3}
(a)3=(1)3a3=a3(-a)^3 = (-1)^3 \cdot a^3 = -a^3
(b2)3=b23=b6(b^2)^3 = b^{2 \cdot 3} = b^6
Therefore,
(a)3(b2)3=a3b6\frac{(-a)^3}{(b^2)^3} = \frac{-a^3}{b^6}

3. Final Answer

The simplified expression is a3b6-\frac{a^3}{b^6}.