The problem is to factorize a list of given algebraic expressions completely.
2025/8/1
1. Problem Description
The problem is to factorize a list of given algebraic expressions completely.
2. Solution Steps
1. $5a + 5b = 5(a+b)$
2. $7x + 7y = 7(x+y)$
3. $7x + x^2 = x(7+x)$
4. $y^2 + 8y = y(y+8)$
5. $2y^2 + 3y = y(2y+3)$
6. $6y^2 - 4y = 2y(3y-2)$
7. $3x^2 - 21x = 3x(x-7)$
8. $16a - 2a^2 = 2a(8-a)$
9. $6c^2 - 21c = 3c(2c-7)$
1
0. $15x - 9x^2 = 3x(5-3x)$
1
1. $56y - 21y^2 = 7y(8-3y)$
1
2. $ax + bx + 2cx = x(a+b+2c)$
1
3. $x^2 + xy + 3xz = x(x+y+3z)$
1
4. $x^2y + y^3 + z^2y = y(x^2 + y^2 + z^2)$
1
5. $3a^2b + 2ab^2 = ab(3a+2b)$
1
6. $x^2y + xy^2 = xy(x+y)$
1
7. $6a^2 + 4ab + 2ac = 2a(3a+2b+c)$
1
8. $ma + 2bm + m^2$ (cannot be factorized easily.)
1
9. $2kx + 6ky + 4kz = 2k(x+3y+2z)$
2
0. $ax^2 + ay + 2ab$ (cannot be factorized easily.)
2
1. $x^2k + xk^2 = xk(x+k)$
2
2. $a^3b + 2ab^2 = ab(a^2 + 2b)$
2
3. $abc - 3b^2c = bc(a-3b)$
2
4. $2a^2e - 5ae^2 = ae(2a - 5e)$
2
5. $a^3b + ab^3 = ab(a^2 + b^2)$
2
6. $x^3y + x^2y^2 = x^2y(x+y)$
2
7. $6xy^2 - 4x^2y = 2xy(3y - 2x)$
2
8. $3ab^3 - 3a^3b = 3ab(b^2 - a^2) = 3ab(b-a)(b+a)$
2
9. $2a^3b + 5a^2b^2 = a^2b(2a + 5b)$
3
0. $ax^2y - 2ax^2z = ax^2(y-2z)$
3
1. $2abx + 2ab^2 + 2a^2b = 2ab(x+b+a)$
3
2. $ayx + yx^3 - 2y^2x^2 = xy(a + x^2 - 2xy)$
3. Final Answer
1. $5(a+b)$
2. $7(x+y)$
3. $x(7+x)$
4. $y(y+8)$
5. $y(2y+3)$
6. $2y(3y-2)$
7. $3x(x-7)$
8. $2a(8-a)$
9. $3c(2c-7)$
1
0. $3x(5-3x)$
1
1. $7y(8-3y)$
1
2. $x(a+b+2c)$
1
3. $x(x+y+3z)$
1
4. $y(x^2 + y^2 + z^2)$
1
5. $ab(3a+2b)$
1
6. $xy(x+y)$
1
7. $2a(3a+2b+c)$
1
8. $ma + 2bm + m^2$
1
9. $2k(x+3y+2z)$
2
0. $ax^2 + ay + 2ab$
2
1. $xk(x+k)$
2
2. $ab(a^2 + 2b)$
2
3. $bc(a-3b)$
2
4. $ae(2a - 5e)$
2
5. $ab(a^2 + b^2)$
2
6. $x^2y(x+y)$
2
7. $2xy(3y - 2x)$
2
8. $3ab(b-a)(b+a)$
2
9. $a^2b(2a + 5b)$
3
0. $ax^2(y-2z)$
3
1. $2ab(x+b+a)$
3