We are asked to simplify the expression $(\frac{-9k^{10}}{-3k^4})^3$.

AlgebraExponentsSimplificationAlgebraic ExpressionsPower of a PowerPower of a Product
2025/7/31

1. Problem Description

We are asked to simplify the expression (9k103k4)3(\frac{-9k^{10}}{-3k^4})^3.

2. Solution Steps

First, simplify the fraction inside the parentheses:
9k103k4=93k10k4=3k104=3k6\frac{-9k^{10}}{-3k^4} = \frac{-9}{-3} \cdot \frac{k^{10}}{k^4} = 3k^{10-4} = 3k^6.
We use the rule for dividing exponents with the same base:
aman=amn\frac{a^m}{a^n} = a^{m-n}.
So the expression becomes (3k6)3(3k^6)^3.
Next, apply the power of a product rule and the power of a power rule:
(ab)n=anbn(ab)^n = a^n b^n
(am)n=amn(a^m)^n = a^{m \cdot n}.
Thus, (3k6)3=33(k6)3=27k63=27k18(3k^6)^3 = 3^3 (k^6)^3 = 27 k^{6 \cdot 3} = 27k^{18}.

3. Final Answer

27k1827k^{18}