The problem asks us to simplify the expression $(3g^3 \times g^4)^5$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/7/31

1. Problem Description

The problem asks us to simplify the expression (3g3×g4)5(3g^3 \times g^4)^5.

2. Solution Steps

First, we simplify the expression inside the parentheses:
3g3×g4=3g3+4=3g73g^3 \times g^4 = 3g^{3+4} = 3g^7
Then, we raise the result to the power of 5:
(3g7)5=35×(g7)5(3g^7)^5 = 3^5 \times (g^7)^5
We know that (am)n=am×n(a^m)^n = a^{m \times n}, so (g7)5=g7×5=g35(g^7)^5 = g^{7 \times 5} = g^{35}.
Also, 35=3×3×3×3×3=2433^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243.
Therefore, (3g7)5=243g35(3g^7)^5 = 243g^{35}.

3. Final Answer

243g35243g^{35}