The problem asks us to simplify the expression $(\frac{m}{n^7})^4$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/7/31

1. Problem Description

The problem asks us to simplify the expression (mn7)4(\frac{m}{n^7})^4.

2. Solution Steps

We need to raise the fraction mn7\frac{m}{n^7} to the power of

4. Recall that $(\frac{a}{b})^n = \frac{a^n}{b^n}$.

Using this rule, we have:
(mn7)4=m4(n7)4(\frac{m}{n^7})^4 = \frac{m^4}{(n^7)^4}
Now, we need to simplify (n7)4(n^7)^4. Recall that (am)n=amn(a^m)^n = a^{m \cdot n}.
So, (n7)4=n74=n28(n^7)^4 = n^{7 \cdot 4} = n^{28}.
Therefore, (mn7)4=m4n28(\frac{m}{n^7})^4 = \frac{m^4}{n^{28}}.

3. Final Answer

m4n28\frac{m^4}{n^{28}}