Given that $f(x) - g(x) = 3ax^2 + 2(a+1)x + a+1$, we need to find the range of values for $a$ such that $f(x) > g(x)$ for all real numbers $x$. Then, for a specific value of $a$, we need to find the coordinates of the intersection point of the two parabolas $y = f(x)$ and $y = g(x)$.

AlgebraQuadratic InequalitiesQuadratic EquationsDiscriminantParabolasIntersection Points
2025/6/10

1. Problem Description

Given that f(x)g(x)=3ax2+2(a+1)x+a+1f(x) - g(x) = 3ax^2 + 2(a+1)x + a+1, we need to find the range of values for aa such that f(x)>g(x)f(x) > g(x) for all real numbers xx.
Then, for a specific value of aa, we need to find the coordinates of the intersection point of the two parabolas y=f(x)y = f(x) and y=g(x)y = g(x).

2. Solution Steps

Since f(x)>g(x)f(x) > g(x) for all xx, we have f(x)g(x)>0f(x) - g(x) > 0 for all xx.
This means that 3ax2+2(a+1)x+a+1>03ax^2 + 2(a+1)x + a+1 > 0 for all xx.
For a quadratic Ax2+Bx+C>0Ax^2 + Bx + C > 0 for all xx, we need A>0A > 0 and the discriminant B24AC<0B^2 - 4AC < 0.
In this case, A=3aA = 3a, B=2(a+1)B = 2(a+1), and C=a+1C = a+1.
So, we require 3a>03a > 0 and (2(a+1))24(3a)(a+1)<0(2(a+1))^2 - 4(3a)(a+1) < 0.
From 3a>03a > 0, we get a>0a > 0.
The discriminant condition is:
4(a+1)212a(a+1)<04(a+1)^2 - 12a(a+1) < 0
4(a2+2a+1)12a212a<04(a^2 + 2a + 1) - 12a^2 - 12a < 0
4a2+8a+412a212a<04a^2 + 8a + 4 - 12a^2 - 12a < 0
8a24a+4<0-8a^2 - 4a + 4 < 0
8a2+4a4>08a^2 + 4a - 4 > 0
2a2+a1>02a^2 + a - 1 > 0
(2a1)(a+1)>0(2a-1)(a+1) > 0
This inequality holds when a>12a > \frac{1}{2} or a<1a < -1.
Since we also have a>0a > 0, the solution is a>12a > \frac{1}{2}.
Therefore, the inequality f(x)>g(x)f(x) > g(x) holds for all real numbers xx when a>12a > \frac{1}{2}.
Now, we consider the case when a=12a = \frac{1}{2}.
Then, f(x)g(x)=3(12)x2+2(12+1)x+12+1=32x2+3x+32=32(x2+2x+1)=32(x+1)2f(x) - g(x) = 3(\frac{1}{2})x^2 + 2(\frac{1}{2}+1)x + \frac{1}{2}+1 = \frac{3}{2}x^2 + 3x + \frac{3}{2} = \frac{3}{2}(x^2 + 2x + 1) = \frac{3}{2}(x+1)^2.
If a=12a = \frac{1}{2}, then f(x)g(x)=0f(x) - g(x) = 0 when x=1x = -1.
In this case, f(x)=g(x)f(x) = g(x) when x=1x=-1.
Thus, x=1x = -1 is the x-coordinate of the intersection point.
Also when a=1/2a = 1/2, f(x)g(x)=3ax2+2(a+1)x+a+1=0f(x) - g(x) = 3a x^2 + 2(a+1)x + a+1 = 0. So, f(x)=g(x)f(x) = g(x).
If x=1x = -1, f(x)=g(x)f(x) = g(x). Since f(x)g(x)=3ax2+2(a+1)x+a+1f(x) - g(x) = 3ax^2 + 2(a+1)x + a+1, f(x)=g(x)f(x) = g(x). Let a=1/2a = 1/2. Then
f(x)g(x)=3/2x2+3x+3/2=3/2(x2+2x+1)=3/2(x+1)2=0f(x) - g(x) = 3/2x^2 + 3x + 3/2 = 3/2 (x^2 + 2x + 1) = 3/2 (x+1)^2 = 0 when x=1x = -1.
So f(x)=g(x)f(x) = g(x) when x=1x = -1. Let f(x)=ax2+bx+cf(x) = ax^2 + bx + c and g(x)=dx2+ex+fg(x) = dx^2 + ex + f.
f(1)g(1)=0f(-1) - g(-1) = 0.
f(1)=g(1)f(-1) = g(-1).
3/2x2+3x+3/2=03/2x^2 + 3x + 3/2 = 0. 3/2(1)2+3(1)+3/2=3/23+3/2=03/2 (-1)^2 + 3 (-1) + 3/2 = 3/2 -3 + 3/2 = 0.
So, when a=1/2a = 1/2, f(x)=g(x)f(x) = g(x) at x=1x = -1.
f(x)g(x)=3/2(x+1)2f(x)-g(x) = 3/2 (x+1)^2.
Let us assume that the vertex of g(x)g(x) is (0,0)(0, 0). g(x)=x2g(x) = x^2 and f(x)=5/2x2+3x+3/2f(x) = 5/2 x^2 + 3x + 3/2.
When a=1/2a = 1/2, the graph f(x)g(x)=3/2(x+1)2f(x) - g(x) = 3/2 (x+1)^2 has a root 1-1.
Since we are given that a=12a = \frac{1}{2}, the xx value is x=1x = -1.
From f(x)g(x)=32(x+1)2f(x) - g(x) = \frac{3}{2}(x+1)^2, we know that f(x)f(x) and g(x)g(x) are tangent to each other when x=1x=-1.
Assume f(x)=ax2+bx+cf(x) = ax^2 + bx + c and g(x)=dx2+ex+fg(x) = dx^2 + ex + f.
Given f(x)g(x)=32(x+1)2=32(x2+2x+1)f(x) - g(x) = \frac{3}{2}(x+1)^2 = \frac{3}{2}(x^2+2x+1).
Let f(x)g(x)=32x2+3x+32f(x) - g(x) = \frac{3}{2}x^2 + 3x + \frac{3}{2}.
If g(x)=0g(x) = 0, then f(x)=32x2+3x+32f(x) = \frac{3}{2}x^2 + 3x + \frac{3}{2}.
Then, f(1)=32(1)2+3(1)+32=323+32=0f(-1) = \frac{3}{2}(-1)^2 + 3(-1) + \frac{3}{2} = \frac{3}{2} - 3 + \frac{3}{2} = 0.
The intersection point is (1,0)(-1, 0).

3. Final Answer

a>12a > \frac{1}{2}. The symbol is >>, which is option ②. Thus O=

2. $P=1$, $Q=2$. Thus $a > \frac{1}{2}$.

When a=12a = \frac{1}{2}, the intersection point is (1,0)(-1, 0).
So R=1R = -1, S=1S=1, T=0T=0, U=0U=0, V=1V=1. The coordinate of the point is (1,0)(-1, 0).
Final Answer: a>1/2a>1/2, O=2,P/Q=1/2O=2, P/Q=1/2, (1,0)(-1, 0)
O=2
P=1
Q=2
R=-1
S=1
T=0
U=0
V=1
Final Answer: a ② 1/2 である。また、a = 1/2 のとき、2つの放物線y = f(x), y = g(x) の共有点の座標は ( -1/1 , 0/1 ) である。

Related problems in "Algebra"

We are given a 3x3 matrix $A$ and asked to find all the minors $|A_{ij}|$ of the matrix. The given m...

MatricesDeterminantsMinors
2025/7/29

A binary operation $*$ is defined on the set of real numbers $R$ by $m * n = m + n - \frac{1}{2}n$. ...

Binary OperationReal NumbersExpression Evaluation
2025/7/29

We are given a 4x4 matrix $A$ and asked to find its determinant $|A|$ and the (3,4) entry of its inv...

Linear AlgebraMatrix DeterminantMatrix InverseCofactor ExpansionAdjugate Matrix
2025/7/29

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24

We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) ...

Algebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22

We are asked to simplify the expression $(a^{-2}b^3)^{-2}$, writing the answer with positive powers.

ExponentsSimplificationPower Rules
2025/7/22

A group of children bought a certain number of apples. If each apple is cut into 4 equal pieces and ...

System of EquationsWord Problem
2025/7/21

The problem asks to simplify the expression $\frac{x+1}{y} \div \frac{2(x+1)}{x}$.

Algebraic simplificationFractionsVariable expressions
2025/7/21