We are given that a positive integer $N$ is represented as $abc$ in base 5 and $cba$ in base 9. We want to find $N$ in base 10 and base 4.

Number TheoryNumber BasesBase ConversionDiophantine Equations
2025/3/31

1. Problem Description

We are given that a positive integer NN is represented as abcabc in base 5 and cbacba in base

9. We want to find $N$ in base 10 and base

4.

2. Solution Steps

The digits in base 5 are 0,1,2,3,40, 1, 2, 3, 4. The digits in base 9 are 0,1,2,3,4,5,6,7,80, 1, 2, 3, 4, 5, 6, 7, 8. Therefore, 0a40 \le a \le 4, 0b40 \le b \le 4, 0c40 \le c \le 4 and 0a80 \le a \le 8, 0b80 \le b \le 8, 0c80 \le c \le 8. Combining these, we have 1a41 \le a \le 4 (since aa is the leading digit), 0b40 \le b \le 4, and 0c40 \le c \le 4. Since cc is the leading digit in base 9, we also have 1c81 \le c \le 8.
We have:
N=a52+b51+c50=25a+5b+cN = a \cdot 5^2 + b \cdot 5^1 + c \cdot 5^0 = 25a + 5b + c
N=c92+b91+a90=81c+9b+aN = c \cdot 9^2 + b \cdot 9^1 + a \cdot 9^0 = 81c + 9b + a
Equating the two expressions for NN:
25a+5b+c=81c+9b+a25a + 5b + c = 81c + 9b + a
24a4b80c=024a - 4b - 80c = 0
6ab20c=06a - b - 20c = 0
b=6a20cb = 6a - 20c
From the inequalities above, 1a41 \le a \le 4, 0b40 \le b \le 4, 1c41 \le c \le 4.
Substituting b=6a20cb = 6a - 20c, we get 06a20c40 \le 6a - 20c \le 4.
6a4+20c6a \le 4 + 20c
6a20c6a \ge 20c
If c=1c=1, then 206a2420 \le 6a \le 24, so 20/6a420/6 \le a \le 4. Thus, aa can be 44.
If a=4a=4, then b=6(4)20(1)=2420=4b = 6(4) - 20(1) = 24 - 20 = 4. So, a=4,b=4,c=1a=4, b=4, c=1.
Then, N=25a+5b+c=25(4)+5(4)+1=100+20+1=121N = 25a + 5b + c = 25(4) + 5(4) + 1 = 100 + 20 + 1 = 121
N=81c+9b+a=81(1)+9(4)+4=81+36+4=121N = 81c + 9b + a = 81(1) + 9(4) + 4 = 81 + 36 + 4 = 121
So N=121N=121 in base
1
0.
To convert 121 to base 4:
121÷4=30121 \div 4 = 30 remainder 1
30÷4=730 \div 4 = 7 remainder 2
7÷4=17 \div 4 = 1 remainder 3
1÷4=01 \div 4 = 0 remainder 1
So, 121=13214121 = 1321_4
From the original problem,
A=1,B=4,C=0,D=4,E=1,F=4A=1, B=4, C=0, D=4, E=1, F=4
G=2,H=5,I=5,J=8,K=1,L=9G=2, H=5, I=5, J=8, K=1, L=9
M=6,N=2,O=0M=6, N=2, O=0
a=4,b=4,c=1a=4, b=4, c=1
P=4,Q=4,R=1P=4, Q=4, R=1
STU=121STU = 121
VWXY=1321VWXY = 1321

3. Final Answer

A=1,B=4,C=0,D=4,E=1,F=4A=1, B=4, C=0, D=4, E=1, F=4
G=2,H=5,I=5,J=8,K=1,L=9G=2, H=5, I=5, J=8, K=1, L=9
M=6,N=2,O=0M=6, N=2, O=0
a=4,b=4,c=1a=4, b=4, c=1
P=4,Q=4,R=1P=4, Q=4, R=1
STU=121STU = 121
VWXY=1321VWXY = 1321

Related problems in "Number Theory"

Question 9: Find the binary, hexadecimal, or octal number that is equivalent to the decimal value 16...

Number Base ConversionsBinaryHexadecimalOctalDecimal
2025/4/8

The problem asks us to fill in a 2x2 table with numbers less than 100. The rows are "a square number...

Number PropertiesSquare NumbersEven and Odd Numbers
2025/4/4

We have four digit cards: 7, 5, 2, and 1. We need to choose two cards each time to make two-digit nu...

DivisibilityFactorsMultiplesSquare Numbers
2025/4/4

The problem asks to find the hexadecimal equivalent of $X+Y$, where $X = 10010_2$ and $Y = 1111_2$ a...

Number SystemsBinaryHexadecimalBase ConversionArithmetic Operations
2025/3/31

The image presents multiple-choice questions. We will solve questions 34, 35, 36, and 37. Question 3...

Modular ArithmeticModulo Operation
2025/3/31

We are asked to find which of the given numbers cannot be the base of the number $12012$.

Number BasesBase Conversion
2025/3/31

The problem asks us to classify given numbers into different sets of numbers: - N: Natural numbers -...

Number SetsReal NumbersRational NumbersIrrational NumbersIntegersNatural Numbers
2025/3/30

We are given the number 243, which is not a perfect square. We need to find the smallest natural num...

Perfect SquaresPrime FactorizationInteger Properties
2025/3/30

The problem asks us to find the smallest natural number that we need to divide 675 by to obtain a pe...

Prime FactorizationPerfect SquaresDivisibility
2025/3/30

Determine whether the number $\frac{\pi}{5}$ is rational or irrational.

Rational NumbersIrrational NumbersReal NumbersPi
2025/3/21