(i) Angular velocity of link CD.
First, we need to determine the loop closure equation in complex form. We will represent the position of each link as a complex number.
Let r A B r_{AB} r A B , r B C r_{BC} r BC , and r C D r_{CD} r C D be the lengths of links AB, BC, and CD, respectively. Let θ A B \theta_{AB} θ A B , θ B C \theta_{BC} θ BC , and θ C D \theta_{CD} θ C D be the angles of links AB, BC, and CD, respectively, measured counter-clockwise from the horizontal axis. The loop closure equation is:
r A B e i θ A B + r B C e i θ B C = r A D + r C D e i θ C D r_{AB}e^{i\theta_{AB}} + r_{BC}e^{i\theta_{BC}} = r_{AD} + r_{CD}e^{i\theta_{CD}} r A B e i θ A B + r BC e i θ BC = r A D + r C D e i θ C D In this case, r A D r_{AD} r A D is zero. We are given that θ A B = 90 ∘ = π / 2 \theta_{AB} = 90^\circ = \pi/2 θ A B = 9 0 ∘ = π /2 , θ B C = 30 ∘ = π / 6 \theta_{BC} = 30^\circ = \pi/6 θ BC = 3 0 ∘ = π /6 , and θ C D = 0 ∘ = 0 \theta_{CD} = 0^\circ = 0 θ C D = 0 ∘ = 0 .
So,
100 e i π / 2 + 150 e i π / 6 = 100 e i 0 100e^{i\pi/2} + 150e^{i\pi/6} = 100e^{i0} 100 e iπ /2 + 150 e iπ /6 = 100 e i 0 100 ( cos ( π / 2 ) + i sin ( π / 2 ) ) + 150 ( cos ( π / 6 ) + i sin ( π / 6 ) ) = 100 ( cos ( 0 ) + i sin ( 0 ) ) 100(\cos(\pi/2) + i\sin(\pi/2)) + 150(\cos(\pi/6) + i\sin(\pi/6)) = 100(\cos(0) + i\sin(0)) 100 ( cos ( π /2 ) + i sin ( π /2 )) + 150 ( cos ( π /6 ) + i sin ( π /6 )) = 100 ( cos ( 0 ) + i sin ( 0 )) 100 ( 0 + i ) + 150 ( 3 / 2 + i / 2 ) = 100 ( 1 + 0 i ) 100(0 + i) + 150(\sqrt{3}/2 + i/2) = 100(1 + 0i) 100 ( 0 + i ) + 150 ( 3 /2 + i /2 ) = 100 ( 1 + 0 i ) 100 i + 75 3 + 75 i = 100 100i + 75\sqrt{3} + 75i = 100 100 i + 75 3 + 75 i = 100 75 3 + 175 i = 100 75\sqrt{3} + 175i = 100 75 3 + 175 i = 100 This is not valid. So instead, let us take AD as fixed on the x axis. So the equation is
r A B e i θ A B + r B C e i θ B C = r A D + r C D e i θ C D r_{AB}e^{i\theta_{AB}} + r_{BC}e^{i\theta_{BC}} = r_{AD} + r_{CD}e^{i\theta_{CD}} r A B e i θ A B + r BC e i θ BC = r A D + r C D e i θ C D r A D = r A B e i θ A B + r B C e i θ B C − r C D e i θ C D r_{AD} = r_{AB}e^{i\theta_{AB}} + r_{BC}e^{i\theta_{BC}} - r_{CD}e^{i\theta_{CD}} r A D = r A B e i θ A B + r BC e i θ BC − r C D e i θ C D r A D = 100 e i π / 2 + 150 e i π / 6 − 100 e i 0 r_{AD} = 100e^{i\pi/2} + 150e^{i\pi/6} - 100e^{i0} r A D = 100 e iπ /2 + 150 e iπ /6 − 100 e i 0 r A D = 100 ( i ) + 150 ( 3 / 2 + i / 2 ) − 100 r_{AD} = 100(i) + 150(\sqrt{3}/2 + i/2) - 100 r A D = 100 ( i ) + 150 ( 3 /2 + i /2 ) − 100 r A D = 75 3 − 100 + 175 i r_{AD} = 75\sqrt{3} - 100 + 175i r A D = 75 3 − 100 + 175 i
Now we differentiate the loop closure equation with respect to time:
i r A B ω A B e i θ A B + i r B C ω B C e i θ B C = i r C D ω C D e i θ C D i r_{AB} \omega_{AB} e^{i\theta_{AB}} + i r_{BC} \omega_{BC} e^{i\theta_{BC}} = i r_{CD} \omega_{CD} e^{i\theta_{CD}} i r A B ω A B e i θ A B + i r BC ω BC e i θ BC = i r C D ω C D e i θ C D 100 ( 2 ) e i ( π / 2 + π / 2 ) + 150 ω B C e i ( π / 6 + π / 2 ) = 100 ω C D e i ( π / 2 ) 100 (2) e^{i(\pi/2 + \pi/2)} + 150 \omega_{BC} e^{i(\pi/6 + \pi/2)} = 100 \omega_{CD} e^{i(\pi/2)} 100 ( 2 ) e i ( π /2 + π /2 ) + 150 ω BC e i ( π /6 + π /2 ) = 100 ω C D e i ( π /2 ) 100 ( 2 ) i + 150 ω B C e i ( π / 6 ) = 100 ω C D 100 (2) i + 150 \omega_{BC} e^{i(\pi/6 )} = 100 \omega_{CD} 100 ( 2 ) i + 150 ω BC e i ( π /6 ) = 100 ω C D Here ω A B = − 2 \omega_{AB} = -2 ω A B = − 2 , since AB rotates clockwise. i r A B ω A B e i θ A B + i r B C ω B C e i θ B C = i r C D ω C D e i θ C D i r_{AB} \omega_{AB} e^{i\theta_{AB}} + i r_{BC} \omega_{BC} e^{i\theta_{BC}} = i r_{CD} \omega_{CD} e^{i\theta_{CD}} i r A B ω A B e i θ A B + i r BC ω BC e i θ BC = i r C D ω C D e i θ C D i 100 ( − 2 ) e i ( π / 2 ) + i 150 ω B C e i ( π / 6 ) = i 100 ω C D e i ( 0 ) i 100 (-2) e^{i(\pi/2)} + i 150 \omega_{BC} e^{i(\pi/6)} = i 100 \omega_{CD} e^{i(0)} i 100 ( − 2 ) e i ( π /2 ) + i 150 ω BC e i ( π /6 ) = i 100 ω C D e i ( 0 ) − 200 i ( i ) + i 150 ω B C ( 3 / 2 + i / 2 ) = 100 i ω C D -200 i (i) + i 150 \omega_{BC} (\sqrt{3}/2 + i/2) = 100 i\omega_{CD} − 200 i ( i ) + i 150 ω BC ( 3 /2 + i /2 ) = 100 i ω C D 200 + 150 i ω B C ( 3 / 2 + i / 2 ) = 100 ω C D i 200 + 150 i\omega_{BC} (\sqrt{3}/2 + i/2) = 100 \omega_{CD}i 200 + 150 i ω BC ( 3 /2 + i /2 ) = 100 ω C D i Equating real and imaginary parts:
200 + 150 ω B C ( − 1 2 ) = 0 200 + 150 \omega_{BC} (-\frac{1}{2}) = 0 200 + 150 ω BC ( − 2 1 ) = 0 150 ω B C 3 2 = 100 ω C D 150 \omega_{BC} \frac{\sqrt{3}}{2} = 100 \omega_{CD} 150 ω BC 2 3 = 100 ω C D ω B C = 200 / 75 = 8 / 3 \omega_{BC} = 200/75 = 8/3 ω BC = 200/75 = 8/3 rad/s 150 ( 8 3 ) 3 2 = 100 ω C D 150 (\frac{8}{3}) \frac{\sqrt{3}}{2} = 100 \omega_{CD} 150 ( 3 8 ) 2 3 = 100 ω C D 400 3 = 200 ω C D 400\sqrt{3} = 200\omega_{CD} 400 3 = 200 ω C D ω C D = 2 3 / 2 = 2 3 \omega_{CD} = 2\sqrt{3}/2 = 2\sqrt{3} ω C D = 2 3 /2 = 2 3 rad/s.
(ii) Angular acceleration of link CD.
Differentiating the velocity equation with respect to time:
i r A B α A B e i θ A B − r A B ω A B 2 e i θ A B + i r B C α B C e i θ B C − r B C ω B C 2 e i θ B C = i r C D α C D e i θ C D − r C D ω C D 2 e i θ C D i r_{AB} \alpha_{AB} e^{i\theta_{AB}} - r_{AB} \omega_{AB}^2 e^{i\theta_{AB}} + i r_{BC} \alpha_{BC} e^{i\theta_{BC}} - r_{BC} \omega_{BC}^2 e^{i\theta_{BC}} = i r_{CD} \alpha_{CD} e^{i\theta_{CD}} - r_{CD} \omega_{CD}^2 e^{i\theta_{CD}} i r A B α A B e i θ A B − r A B ω A B 2 e i θ A B + i r BC α BC e i θ BC − r BC ω BC 2 e i θ BC = i r C D α C D e i θ C D − r C D ω C D 2 e i θ C D
Since the angular velocity of AB is constant, α A B = 0 \alpha_{AB} = 0 α A B = 0 . So, − r A B ω A B 2 e i θ A B + i r B C α B C e i θ B C − r B C ω B C 2 e i θ B C = i r C D α C D e i θ C D − r C D ω C D 2 e i θ C D - r_{AB} \omega_{AB}^2 e^{i\theta_{AB}} + i r_{BC} \alpha_{BC} e^{i\theta_{BC}} - r_{BC} \omega_{BC}^2 e^{i\theta_{BC}} = i r_{CD} \alpha_{CD} e^{i\theta_{CD}} - r_{CD} \omega_{CD}^2 e^{i\theta_{CD}} − r A B ω A B 2 e i θ A B + i r BC α BC e i θ BC − r BC ω BC 2 e i θ BC = i r C D α C D e i θ C D − r C D ω C D 2 e i θ C D
− ( 100 ) ( − 2 ) 2 e i π / 2 + i ( 150 ) α B C e i π / 6 − ( 150 ) ( 8 3 ) 2 e i π / 6 = i ( 100 ) α C D − ( 100 ) ( 2 3 ) 2 -(100) (-2)^2 e^{i\pi/2} + i(150)\alpha_{BC} e^{i\pi/6} - (150)(\frac{8}{3})^2 e^{i\pi/6} = i(100)\alpha_{CD} - (100)(2\sqrt{3})^2 − ( 100 ) ( − 2 ) 2 e iπ /2 + i ( 150 ) α BC e iπ /6 − ( 150 ) ( 3 8 ) 2 e iπ /6 = i ( 100 ) α C D − ( 100 ) ( 2 3 ) 2
− 400 i + 150 i α B C ( 3 / 2 + i / 2 ) − 150 ( 64 9 ) ( 3 / 2 + i / 2 ) = 100 i α C D − 1200 -400i + 150i\alpha_{BC} (\sqrt{3}/2 + i/2) - 150(\frac{64}{9}) (\sqrt{3}/2 + i/2) = 100i\alpha_{CD} - 1200 − 400 i + 150 i α BC ( 3 /2 + i /2 ) − 150 ( 9 64 ) ( 3 /2 + i /2 ) = 100 i α C D − 1200 − 400 i + 75 3 i α B C − 75 α B C − ( 4800 9 ) ( 3 / 2 + i / 2 ) = 100 i α C D − 1200 -400i + 75\sqrt{3}i \alpha_{BC} - 75\alpha_{BC} - (\frac{4800}{9}) (\sqrt{3}/2 + i/2) = 100i\alpha_{CD} - 1200 − 400 i + 75 3 i α BC − 75 α BC − ( 9 4800 ) ( 3 /2 + i /2 ) = 100 i α C D − 1200 − 400 i + 75 3 i α B C − 75 α B C − 2400 3 9 − 2400 9 i = 100 i α C D − 1200 -400i + 75\sqrt{3}i \alpha_{BC} - 75\alpha_{BC} - \frac{2400\sqrt{3}}{9} - \frac{2400}{9} i = 100i\alpha_{CD} - 1200 − 400 i + 75 3 i α BC − 75 α BC − 9 2400 3 − 9 2400 i = 100 i α C D − 1200
Equating real parts:
− 75 α B C − 800 3 3 = − 1200 -75\alpha_{BC} - \frac{800\sqrt{3}}{3} = -1200 − 75 α BC − 3 800 3 = − 1200 75 α B C = 1200 − 800 3 3 = 3600 − 800 3 3 75\alpha_{BC} = 1200 - \frac{800\sqrt{3}}{3} = \frac{3600 - 800\sqrt{3}}{3} 75 α BC = 1200 − 3 800 3 = 3 3600 − 800 3 α B C = 3600 − 800 3 225 = 144 − 32 3 9 \alpha_{BC} = \frac{3600 - 800\sqrt{3}}{225} = \frac{144-32\sqrt{3}}{9} α BC = 225 3600 − 800 3 = 9 144 − 32 3
Equating imaginary parts:
− 400 + 75 3 α B C − 800 3 = 100 α C D -400 + 75\sqrt{3}\alpha_{BC} - \frac{800}{3} = 100\alpha_{CD} − 400 + 75 3 α BC − 3 800 = 100 α C D 75 3 α B C − 2000 3 = 100 α C D 75\sqrt{3}\alpha_{BC} - \frac{2000}{3} = 100\alpha_{CD} 75 3 α BC − 3 2000 = 100 α C D 75 3 ( 144 − 32 3 9 ) − 2000 3 = 100 α C D 75\sqrt{3}(\frac{144-32\sqrt{3}}{9}) - \frac{2000}{3} = 100\alpha_{CD} 75 3 ( 9 144 − 32 3 ) − 3 2000 = 100 α C D 25 3 ( 144 − 32 3 3 ) − 2000 3 = 100 α C D 25\sqrt{3}(\frac{144-32\sqrt{3}}{3}) - \frac{2000}{3} = 100\alpha_{CD} 25 3 ( 3 144 − 32 3 ) − 3 2000 = 100 α C D 3600 3 − 2400 3 − 2000 3 = 300 α C D \frac{3600\sqrt{3} - 2400}{3} - \frac{2000}{3} = 300\alpha_{CD} 3 3600 3 − 2400 − 3 2000 = 300 α C D 3600 3 − 4400 3 = 300 α C D \frac{3600\sqrt{3} - 4400}{3} = 300\alpha_{CD} 3 3600 3 − 4400 = 300 α C D 100 α C D = 3600 3 − 4400 3 ⟹ 100\alpha_{CD} = \frac{3600\sqrt{3} - 4400}{3} \implies 100 α C D = 3 3600 3 − 4400 ⟹ α C D = 36 3 − 44 3 ≈ 1.71 r a d s 2 \alpha_{CD} = \frac{36\sqrt{3} - 44}{3} \approx 1.71 \frac{rad}{s^2} α C D = 3 36 3 − 44 ≈ 1.71 s 2 r a d