The problem describes a four-bar linkage mechanism with links AB, BC, and CD. The lengths of the links are given as AB = 100 mm, BC = 150 mm, and CD = 100 mm. At the given instant, AB is vertical, CD is horizontal, and BC is inclined at 30 degrees to the horizontal. The angular velocity of link AB is 2 rad/s clockwise. We need to find the angular velocity and angular acceleration of link CD at this instant.

Applied MathematicsKinematicsFour-bar linkageComplex NumbersAngular VelocityAngular Acceleration
2025/7/6

1. Problem Description

The problem describes a four-bar linkage mechanism with links AB, BC, and CD. The lengths of the links are given as AB = 100 mm, BC = 150 mm, and CD = 100 mm. At the given instant, AB is vertical, CD is horizontal, and BC is inclined at 30 degrees to the horizontal. The angular velocity of link AB is 2 rad/s clockwise. We need to find the angular velocity and angular acceleration of link CD at this instant.

2. Solution Steps

(i) Angular velocity of link CD.
First, we need to determine the loop closure equation in complex form. We will represent the position of each link as a complex number.
Let rABr_{AB}, rBCr_{BC}, and rCDr_{CD} be the lengths of links AB, BC, and CD, respectively.
Let θAB\theta_{AB}, θBC\theta_{BC}, and θCD\theta_{CD} be the angles of links AB, BC, and CD, respectively, measured counter-clockwise from the horizontal axis.
The loop closure equation is:
rABeiθAB+rBCeiθBC=rAD+rCDeiθCDr_{AB}e^{i\theta_{AB}} + r_{BC}e^{i\theta_{BC}} = r_{AD} + r_{CD}e^{i\theta_{CD}}
In this case, rADr_{AD} is zero. We are given that θAB=90=π/2\theta_{AB} = 90^\circ = \pi/2, θBC=30=π/6\theta_{BC} = 30^\circ = \pi/6, and θCD=0=0\theta_{CD} = 0^\circ = 0.
So,
100eiπ/2+150eiπ/6=100ei0100e^{i\pi/2} + 150e^{i\pi/6} = 100e^{i0}
100(cos(π/2)+isin(π/2))+150(cos(π/6)+isin(π/6))=100(cos(0)+isin(0))100(\cos(\pi/2) + i\sin(\pi/2)) + 150(\cos(\pi/6) + i\sin(\pi/6)) = 100(\cos(0) + i\sin(0))
100(0+i)+150(3/2+i/2)=100(1+0i)100(0 + i) + 150(\sqrt{3}/2 + i/2) = 100(1 + 0i)
100i+753+75i=100100i + 75\sqrt{3} + 75i = 100
753+175i=10075\sqrt{3} + 175i = 100
This is not valid. So instead, let us take AD as fixed on the x axis. So the equation is
rABeiθAB+rBCeiθBC=rAD+rCDeiθCDr_{AB}e^{i\theta_{AB}} + r_{BC}e^{i\theta_{BC}} = r_{AD} + r_{CD}e^{i\theta_{CD}}
rAD=rABeiθAB+rBCeiθBCrCDeiθCDr_{AD} = r_{AB}e^{i\theta_{AB}} + r_{BC}e^{i\theta_{BC}} - r_{CD}e^{i\theta_{CD}}
rAD=100eiπ/2+150eiπ/6100ei0r_{AD} = 100e^{i\pi/2} + 150e^{i\pi/6} - 100e^{i0}
rAD=100(i)+150(3/2+i/2)100r_{AD} = 100(i) + 150(\sqrt{3}/2 + i/2) - 100
rAD=753100+175ir_{AD} = 75\sqrt{3} - 100 + 175i
Now we differentiate the loop closure equation with respect to time:
irABωABeiθAB+irBCωBCeiθBC=irCDωCDeiθCDi r_{AB} \omega_{AB} e^{i\theta_{AB}} + i r_{BC} \omega_{BC} e^{i\theta_{BC}} = i r_{CD} \omega_{CD} e^{i\theta_{CD}}
100(2)ei(π/2+π/2)+150ωBCei(π/6+π/2)=100ωCDei(π/2)100 (2) e^{i(\pi/2 + \pi/2)} + 150 \omega_{BC} e^{i(\pi/6 + \pi/2)} = 100 \omega_{CD} e^{i(\pi/2)}
100(2)i+150ωBCei(π/6)=100ωCD100 (2) i + 150 \omega_{BC} e^{i(\pi/6 )} = 100 \omega_{CD}
Here ωAB=2\omega_{AB} = -2, since AB rotates clockwise.
irABωABeiθAB+irBCωBCeiθBC=irCDωCDeiθCDi r_{AB} \omega_{AB} e^{i\theta_{AB}} + i r_{BC} \omega_{BC} e^{i\theta_{BC}} = i r_{CD} \omega_{CD} e^{i\theta_{CD}}
i100(2)ei(π/2)+i150ωBCei(π/6)=i100ωCDei(0)i 100 (-2) e^{i(\pi/2)} + i 150 \omega_{BC} e^{i(\pi/6)} = i 100 \omega_{CD} e^{i(0)}
200i(i)+i150ωBC(3/2+i/2)=100iωCD-200 i (i) + i 150 \omega_{BC} (\sqrt{3}/2 + i/2) = 100 i\omega_{CD}
200+150iωBC(3/2+i/2)=100ωCDi200 + 150 i\omega_{BC} (\sqrt{3}/2 + i/2) = 100 \omega_{CD}i
Equating real and imaginary parts:
200+150ωBC(12)=0200 + 150 \omega_{BC} (-\frac{1}{2}) = 0
150ωBC32=100ωCD150 \omega_{BC} \frac{\sqrt{3}}{2} = 100 \omega_{CD}
ωBC=200/75=8/3\omega_{BC} = 200/75 = 8/3 rad/s
150(83)32=100ωCD150 (\frac{8}{3}) \frac{\sqrt{3}}{2} = 100 \omega_{CD}
4003=200ωCD400\sqrt{3} = 200\omega_{CD}
ωCD=23/2=23\omega_{CD} = 2\sqrt{3}/2 = 2\sqrt{3} rad/s.
(ii) Angular acceleration of link CD.
Differentiating the velocity equation with respect to time:
irABαABeiθABrABωAB2eiθAB+irBCαBCeiθBCrBCωBC2eiθBC=irCDαCDeiθCDrCDωCD2eiθCDi r_{AB} \alpha_{AB} e^{i\theta_{AB}} - r_{AB} \omega_{AB}^2 e^{i\theta_{AB}} + i r_{BC} \alpha_{BC} e^{i\theta_{BC}} - r_{BC} \omega_{BC}^2 e^{i\theta_{BC}} = i r_{CD} \alpha_{CD} e^{i\theta_{CD}} - r_{CD} \omega_{CD}^2 e^{i\theta_{CD}}
Since the angular velocity of AB is constant, αAB=0\alpha_{AB} = 0. So,
rABωAB2eiθAB+irBCαBCeiθBCrBCωBC2eiθBC=irCDαCDeiθCDrCDωCD2eiθCD- r_{AB} \omega_{AB}^2 e^{i\theta_{AB}} + i r_{BC} \alpha_{BC} e^{i\theta_{BC}} - r_{BC} \omega_{BC}^2 e^{i\theta_{BC}} = i r_{CD} \alpha_{CD} e^{i\theta_{CD}} - r_{CD} \omega_{CD}^2 e^{i\theta_{CD}}
(100)(2)2eiπ/2+i(150)αBCeiπ/6(150)(83)2eiπ/6=i(100)αCD(100)(23)2-(100) (-2)^2 e^{i\pi/2} + i(150)\alpha_{BC} e^{i\pi/6} - (150)(\frac{8}{3})^2 e^{i\pi/6} = i(100)\alpha_{CD} - (100)(2\sqrt{3})^2
400i+150iαBC(3/2+i/2)150(649)(3/2+i/2)=100iαCD1200-400i + 150i\alpha_{BC} (\sqrt{3}/2 + i/2) - 150(\frac{64}{9}) (\sqrt{3}/2 + i/2) = 100i\alpha_{CD} - 1200
400i+753iαBC75αBC(48009)(3/2+i/2)=100iαCD1200-400i + 75\sqrt{3}i \alpha_{BC} - 75\alpha_{BC} - (\frac{4800}{9}) (\sqrt{3}/2 + i/2) = 100i\alpha_{CD} - 1200
400i+753iαBC75αBC24003924009i=100iαCD1200-400i + 75\sqrt{3}i \alpha_{BC} - 75\alpha_{BC} - \frac{2400\sqrt{3}}{9} - \frac{2400}{9} i = 100i\alpha_{CD} - 1200
Equating real parts:
75αBC80033=1200-75\alpha_{BC} - \frac{800\sqrt{3}}{3} = -1200
75αBC=120080033=36008003375\alpha_{BC} = 1200 - \frac{800\sqrt{3}}{3} = \frac{3600 - 800\sqrt{3}}{3}
αBC=36008003225=1443239\alpha_{BC} = \frac{3600 - 800\sqrt{3}}{225} = \frac{144-32\sqrt{3}}{9}
Equating imaginary parts:
400+753αBC8003=100αCD-400 + 75\sqrt{3}\alpha_{BC} - \frac{800}{3} = 100\alpha_{CD}
753αBC20003=100αCD75\sqrt{3}\alpha_{BC} - \frac{2000}{3} = 100\alpha_{CD}
753(1443239)20003=100αCD75\sqrt{3}(\frac{144-32\sqrt{3}}{9}) - \frac{2000}{3} = 100\alpha_{CD}
253(1443233)20003=100αCD25\sqrt{3}(\frac{144-32\sqrt{3}}{3}) - \frac{2000}{3} = 100\alpha_{CD}
360032400320003=300αCD\frac{3600\sqrt{3} - 2400}{3} - \frac{2000}{3} = 300\alpha_{CD}
3600344003=300αCD\frac{3600\sqrt{3} - 4400}{3} = 300\alpha_{CD}
100αCD=3600344003    100\alpha_{CD} = \frac{3600\sqrt{3} - 4400}{3} \implies
αCD=3634431.71rads2\alpha_{CD} = \frac{36\sqrt{3} - 44}{3} \approx 1.71 \frac{rad}{s^2}

3. Final Answer

(i) The angular velocity of link CD is 232\sqrt{3} rad/s.
(ii) The angular acceleration of link CD is 363443\frac{36\sqrt{3} - 44}{3} rad/s².

Related problems in "Applied Mathematics"

The problem asks to find the next time after 12:00 when the minute and hour hands of a clock overlap...

Clock ProblemRotational MotionAngular SpeedTime CalculationWord Problem
2025/7/27

The problem presents a flowchart that evaluates a student's answers to 40 questions. The task is to...

Flowchart AnalysisAlgorithm DesignConditional StatementsLoopsPseudocode
2025/7/27

The problem is to analyze a flowchart representing a computer program that checks multiple-choice an...

Flowchart AnalysisAlgorithm AnalysisComputer ProgrammingVariablesConditional Statements
2025/7/27

We need to calculate the Yield to Maturity (YTM) of a bond given the following information: Face Val...

FinanceBond ValuationYield to Maturity (YTM)Financial ModelingApproximation
2025/7/26

We are given a simply supported beam AB of length $L$, carrying a point load $W$ at a distance $a$ f...

Structural MechanicsBeam TheoryStrain EnergyDeflectionCastigliano's TheoremIntegration
2025/7/26

The problem asks us to determine the degree of static indeterminacy of a rigid plane frame. We need ...

Structural AnalysisStaticsIndeterminacyPlane Frame
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisBending MomentShear ForceStress CalculationEngineering Mechanics
2025/7/26

The problem asks us to show that the element stiffness matrix for a pin-jointed structure is given b...

Structural MechanicsFinite Element AnalysisStiffness MatrixLinear AlgebraEngineering
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26