A slider-crank mechanism is given. The crank length is $r = 0.1$ m, and the connecting rod length is $l = 0.4$ m. The crank angle is $\theta = 30^\circ$. The pressure inside the piston cylinder is $P = 3$ MPa. The crankshaft rotates at a constant angular velocity of $N = 1500$ rpm. The cross-sectional area of the piston is $A = 60$ cm$^2$, and the total mass of the piston is $m = 6$ kg. We need to determine: (i) Velocity of the piston (ii) Acceleration of the piston (iii) Net force acting on the piston (iv) Stress on the connecting rod (v) Side reaction on the piston (vi) Turning moment on the crank shaft

Applied MathematicsMechanicsKinematicsDynamicsEngineeringSlider-Crank Mechanism
2025/7/6

1. Problem Description

A slider-crank mechanism is given. The crank length is r=0.1r = 0.1 m, and the connecting rod length is l=0.4l = 0.4 m. The crank angle is θ=30\theta = 30^\circ. The pressure inside the piston cylinder is P=3P = 3 MPa. The crankshaft rotates at a constant angular velocity of N=1500N = 1500 rpm. The cross-sectional area of the piston is A=60A = 60 cm2^2, and the total mass of the piston is m=6m = 6 kg. We need to determine:
(i) Velocity of the piston
(ii) Acceleration of the piston
(iii) Net force acting on the piston
(iv) Stress on the connecting rod
(v) Side reaction on the piston
(vi) Turning moment on the crank shaft

2. Solution Steps

(i) Velocity of the piston:
First, convert the angular velocity from rpm to rad/s:
ω=2πN60=2π(1500)60=50π\omega = \frac{2 \pi N}{60} = \frac{2 \pi (1500)}{60} = 50\pi rad/s
The piston velocity vpv_p can be determined using the following formula:
vp=rω(sinθ+r2lsin2θ)v_p = r \omega (\sin\theta + \frac{r}{2l} \sin 2\theta)
vp=0.1×50π(sin(30)+0.12×0.4sin(2×30))v_p = 0.1 \times 50\pi (\sin(30^\circ) + \frac{0.1}{2 \times 0.4} \sin(2 \times 30^\circ))
vp=5π(12+1832)=5π(0.5+0.108)=5π(0.608)9.57v_p = 5\pi (\frac{1}{2} + \frac{1}{8} \frac{\sqrt{3}}{2}) = 5\pi (0.5 + 0.108) = 5\pi (0.608) \approx 9.57 m/s
(ii) Acceleration of the piston:
The piston acceleration apa_p can be determined using the following formula:
ap=rω2(cosθ+rlcos2θ)a_p = r \omega^2 (\cos\theta + \frac{r}{l} \cos 2\theta)
ap=0.1(50π)2(cos(30)+0.10.4cos(60))a_p = 0.1 (50\pi)^2 (\cos(30^\circ) + \frac{0.1}{0.4} \cos(60^\circ))
ap=0.1(2500π2)(32+14×12)=250π2(32+18)=250π2(0.866+0.125)=250π2(0.991)a_p = 0.1 (2500 \pi^2) (\frac{\sqrt{3}}{2} + \frac{1}{4} \times \frac{1}{2}) = 250 \pi^2 (\frac{\sqrt{3}}{2} + \frac{1}{8}) = 250 \pi^2 (0.866 + 0.125) = 250 \pi^2 (0.991)
ap250(9.87)(0.991)2443.1a_p \approx 250 (9.87)(0.991) \approx 2443.1 m/s2^2
(iii) Net force acting on the piston:
The pressure force acting on the piston is Fp=P×AF_p = P \times A.
Convert the area from cm2^2 to m2^2: A=60 cm2=60×104 m2=0.006 m2A = 60 \text{ cm}^2 = 60 \times 10^{-4} \text{ m}^2 = 0.006 \text{ m}^2.
Fp=3×106 Pa×0.006 m2=18000F_p = 3 \times 10^6 \text{ Pa} \times 0.006 \text{ m}^2 = 18000 N.
The inertia force is Fi=map=6 kg×2443.1 m/s2=14658.6F_i = m a_p = 6 \text{ kg} \times 2443.1 \text{ m/s}^2 = 14658.6 N.
The net force acting on the piston is Fnet=FpFi=1800014658.6=3341.4F_{net} = F_p - F_i = 18000 - 14658.6 = 3341.4 N.
(iv) Stress on the connecting rod:
We need to calculate the force in the connecting rod.
Fconnectingrod=FpcosϕF_{connecting\,rod} = \frac{F_p}{\cos \phi}, where ϕ\phi is the angle of the connecting rod with the horizontal.
Using the sine rule: sinθl=sinϕr\frac{\sin\theta}{l} = \frac{\sin\phi}{r}, therefore, sinϕ=rlsinθ=0.10.4sin(30)=14×12=18=0.125\sin \phi = \frac{r}{l} \sin\theta = \frac{0.1}{0.4} \sin(30^\circ) = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8} = 0.125.
So ϕ=arcsin(0.125)7.18\phi = \arcsin(0.125) \approx 7.18^\circ.
Fconnectingrod=18000cos(7.18)180000.99218145.16F_{connecting\,rod} = \frac{18000}{\cos(7.18^\circ)} \approx \frac{18000}{0.992} \approx 18145.16 N.
To calculate the stress, we need the cross-sectional area of the connecting rod. Since this value is not provided in the problem, let us assume it is ArodA_{rod}.
Stress =FconnectingrodArod= \frac{F_{connecting\,rod}}{A_{rod}}.
Assuming Arod=100mm2=100×106m2=104m2A_{rod} = 100 mm^2 = 100 \times 10^{-6} m^2= 10^{-4} m^2:
Stress =18145.16104=181.45×106Pa=181.45MPa= \frac{18145.16}{10^{-4}} = 181.45 \times 10^6 Pa = 181.45 MPa.
(v) Side reaction on the piston:
Fside=Fconnectingrodsinϕ=18145.16×sin(7.18)18145.16×0.1252268.14F_{side} = F_{connecting\,rod} \sin \phi = 18145.16 \times \sin(7.18^\circ) \approx 18145.16 \times 0.125 \approx 2268.14 N.
(vi) Turning moment on the crank shaft:
T=Fconnectingrodcosϕ×rsinθ=18145.16×0.992×0.1×0.5900T = F_{connecting\,rod} \cos \phi \times r \sin\theta = 18145.16 \times 0.992 \times 0.1 \times 0.5 \approx 900 Nm. Alternatively, T=Fprsin(θ+ϕ)=18000×0.1×sin(30+7.18)1800×sin(37.18)=1800×0.604=1087.2T = F_p r \sin(\theta + \phi) = 18000 \times 0.1 \times \sin(30^\circ + 7.18^\circ) \approx 1800 \times \sin(37.18) = 1800 \times 0.604 = 1087.2 Nm

3. Final Answer

(i) Velocity of the piston: 9.57 m/s
(ii) Acceleration of the piston: 2443.1 m/s2^2
(iii) Net force acting on the piston: 3341.4 N
(iv) Stress on the connecting rod: 181.45 MPa (assuming Arod=100mm2A_{rod}=100 mm^2)
(v) Side reaction on the piston: 2268.14 N
(vi) Turning moment on the crank shaft: 1087.2 Nm

Related problems in "Applied Mathematics"

The problem asks to find the next time after 12:00 when the minute and hour hands of a clock overlap...

Clock ProblemRotational MotionAngular SpeedTime CalculationWord Problem
2025/7/27

The problem presents a flowchart that evaluates a student's answers to 40 questions. The task is to...

Flowchart AnalysisAlgorithm DesignConditional StatementsLoopsPseudocode
2025/7/27

The problem is to analyze a flowchart representing a computer program that checks multiple-choice an...

Flowchart AnalysisAlgorithm AnalysisComputer ProgrammingVariablesConditional Statements
2025/7/27

We need to calculate the Yield to Maturity (YTM) of a bond given the following information: Face Val...

FinanceBond ValuationYield to Maturity (YTM)Financial ModelingApproximation
2025/7/26

We are given a simply supported beam AB of length $L$, carrying a point load $W$ at a distance $a$ f...

Structural MechanicsBeam TheoryStrain EnergyDeflectionCastigliano's TheoremIntegration
2025/7/26

The problem asks us to determine the degree of static indeterminacy of a rigid plane frame. We need ...

Structural AnalysisStaticsIndeterminacyPlane Frame
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisBending MomentShear ForceStress CalculationEngineering Mechanics
2025/7/26

The problem asks us to show that the element stiffness matrix for a pin-jointed structure is given b...

Structural MechanicsFinite Element AnalysisStiffness MatrixLinear AlgebraEngineering
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26