Let R A R_A R A , R B R_B R B , and R C R_C R C be the vertical reactions at supports A, B, and C, respectively. Let x x x be the distance from support A.
First, we need to find an expression for the bending moment M ( x ) M(x) M ( x ) in terms of an assumed redundant reaction. We'll consider R B R_B R B as the redundant reaction.
From static equilibrium:
R A + R B + R C − 10 − 2 = 0 R_A + R_B + R_C - 10 - 2 = 0 R A + R B + R C − 10 − 2 = 0 R A + R B + R C = 12 R_A + R_B + R_C = 12 R A + R B + R C = 12
R B ∗ 4 + R C ∗ 8 − 10 ∗ 4 − 2 ∗ 6 = 0 R_B * 4 + R_C * 8 - 10 * 4 - 2 * 6 = 0 R B ∗ 4 + R C ∗ 8 − 10 ∗ 4 − 2 ∗ 6 = 0 4 R B + 8 R C = 40 + 12 = 52 4R_B + 8R_C = 40 + 12 = 52 4 R B + 8 R C = 40 + 12 = 52 R B + 2 R C = 13 R_B + 2R_C = 13 R B + 2 R C = 13
From these equations, we have
R A + R C = 12 − R B R_A + R_C = 12 - R_B R A + R C = 12 − R B 2 R C = 13 − R B 2R_C = 13 - R_B 2 R C = 13 − R B R C = 13 − R B 2 R_C = \frac{13 - R_B}{2} R C = 2 13 − R B
R A = 12 − R B − 13 − R B 2 = 24 − 2 R B − 13 + R B 2 = 11 − R B 2 R_A = 12 - R_B - \frac{13 - R_B}{2} = \frac{24 - 2R_B - 13 + R_B}{2} = \frac{11 - R_B}{2} R A = 12 − R B − 2 13 − R B = 2 24 − 2 R B − 13 + R B = 2 11 − R B
Now, we need to find the bending moment M ( x ) M(x) M ( x ) as a function of x x x . For 0 ≤ x ≤ 4 0 \le x \le 4 0 ≤ x ≤ 4 : M ( x ) = R A ∗ x = 11 − R B 2 ∗ x M(x) = R_A * x = \frac{11 - R_B}{2} * x M ( x ) = R A ∗ x = 2 11 − R B ∗ x
For 4 ≤ x ≤ 8 4 \le x \le 8 4 ≤ x ≤ 8 : M ( x ) = R A ∗ x + R B ∗ ( x − 4 ) − 10 ∗ ( x − 4 ) = 11 − R B 2 ∗ x + R B ∗ ( x − 4 ) − 10 ∗ ( x − 4 ) M(x) = R_A * x + R_B * (x - 4) - 10 * (x-4) = \frac{11 - R_B}{2} * x + R_B * (x - 4) - 10 * (x-4) M ( x ) = R A ∗ x + R B ∗ ( x − 4 ) − 10 ∗ ( x − 4 ) = 2 11 − R B ∗ x + R B ∗ ( x − 4 ) − 10 ∗ ( x − 4 ) M ( x ) = 11 x − R B x + 2 R B x − 8 R B − 20 x + 80 2 = − 9 x + R B x − 8 R B + 80 2 M(x) = \frac{11x - R_B x + 2R_B x - 8R_B - 20x + 80}{2} = \frac{-9x + R_B x - 8R_B + 80}{2} M ( x ) = 2 11 x − R B x + 2 R B x − 8 R B − 20 x + 80 = 2 − 9 x + R B x − 8 R B + 80 M ( x ) = ( − 9 + R B ) x − 8 R B + 80 2 M(x) = \frac{(-9 + R_B)x - 8R_B + 80}{2} M ( x ) = 2 ( − 9 + R B ) x − 8 R B + 80
Castigliano's Theorem:
∂ U ∂ R B = ∫ M E I ∂ M ∂ R B d x = 0 \frac{\partial U}{\partial R_B} = \int \frac{M}{EI} \frac{\partial M}{\partial R_B} dx = 0 ∂ R B ∂ U = ∫ E I M ∂ R B ∂ M d x = 0 Since E I EI E I is constant, we can write: ∫ M ∂ M ∂ R B d x = 0 \int M \frac{\partial M}{\partial R_B} dx = 0 ∫ M ∂ R B ∂ M d x = 0
For 0 ≤ x ≤ 4 0 \le x \le 4 0 ≤ x ≤ 4 : M ( x ) = 11 − R B 2 ∗ x M(x) = \frac{11 - R_B}{2} * x M ( x ) = 2 11 − R B ∗ x ∂ M ∂ R B = − x 2 \frac{\partial M}{\partial R_B} = -\frac{x}{2} ∂ R B ∂ M = − 2 x
For 4 ≤ x ≤ 8 4 \le x \le 8 4 ≤ x ≤ 8 : M ( x ) = ( − 9 + R B ) x − 8 R B + 80 2 M(x) = \frac{(-9 + R_B)x - 8R_B + 80}{2} M ( x ) = 2 ( − 9 + R B ) x − 8 R B + 80 ∂ M ∂ R B = x − 8 2 \frac{\partial M}{\partial R_B} = \frac{x - 8}{2} ∂ R B ∂ M = 2 x − 8
∫ 0 4 11 − R B 2 ∗ x ∗ ( − x 2 ) d x + ∫ 4 8 ( − 9 + R B ) x − 8 R B + 80 2 ∗ ( x − 8 2 ) d x = 0 \int_0^4 \frac{11 - R_B}{2} * x * (-\frac{x}{2}) dx + \int_4^8 \frac{(-9 + R_B)x - 8R_B + 80}{2} * (\frac{x - 8}{2}) dx = 0 ∫ 0 4 2 11 − R B ∗ x ∗ ( − 2 x ) d x + ∫ 4 8 2 ( − 9 + R B ) x − 8 R B + 80 ∗ ( 2 x − 8 ) d x = 0 − 1 4 ∫ 0 4 ( 11 x 2 − R B x 2 ) d x + 1 4 ∫ 4 8 ( ( − 9 + R B ) x − 8 R B + 80 ) ( x − 8 ) d x = 0 -\frac{1}{4} \int_0^4 (11x^2 - R_B x^2) dx + \frac{1}{4} \int_4^8 ((-9 + R_B)x - 8R_B + 80)(x-8) dx = 0 − 4 1 ∫ 0 4 ( 11 x 2 − R B x 2 ) d x + 4 1 ∫ 4 8 (( − 9 + R B ) x − 8 R B + 80 ) ( x − 8 ) d x = 0 − ∫ 0 4 ( 11 x 2 − R B x 2 ) d x + ∫ 4 8 ( ( − 9 + R B ) x − 8 R B + 80 ) ( x − 8 ) d x = 0 -\int_0^4 (11x^2 - R_B x^2) dx + \int_4^8 ((-9 + R_B)x - 8R_B + 80)(x-8) dx = 0 − ∫ 0 4 ( 11 x 2 − R B x 2 ) d x + ∫ 4 8 (( − 9 + R B ) x − 8 R B + 80 ) ( x − 8 ) d x = 0
− ∫ 0 4 ( 11 x 2 − R B x 2 ) d x = − [ 11 x 3 3 − R B x 3 3 ] 0 4 = − ( 11 ∗ 64 3 − 64 R B 3 ) = − 704 3 + 64 3 R B -\int_0^4 (11x^2 - R_B x^2) dx = -[\frac{11x^3}{3} - \frac{R_B x^3}{3}]_0^4 = -(\frac{11*64}{3} - \frac{64 R_B}{3}) = -\frac{704}{3} + \frac{64}{3} R_B − ∫ 0 4 ( 11 x 2 − R B x 2 ) d x = − [ 3 11 x 3 − 3 R B x 3 ] 0 4 = − ( 3 11 ∗ 64 − 3 64 R B ) = − 3 704 + 3 64 R B
∫ 4 8 ( ( − 9 + R B ) x − 8 R B + 80 ) ( x − 8 ) d x = ∫ 4 8 ( ( − 9 + R B ) x 2 − 8 ( − 9 + R B ) x − 8 R B x + 64 R B + 80 x − 640 ) d x \int_4^8 ((-9 + R_B)x - 8R_B + 80)(x-8) dx = \int_4^8 ((-9 + R_B)x^2 - 8(-9+R_B)x - 8R_B x + 64R_B + 80x - 640) dx ∫ 4 8 (( − 9 + R B ) x − 8 R B + 80 ) ( x − 8 ) d x = ∫ 4 8 (( − 9 + R B ) x 2 − 8 ( − 9 + R B ) x − 8 R B x + 64 R B + 80 x − 640 ) d x = ∫ 4 8 ( ( − 9 + R B ) x 2 + ( 72 − 8 R B − 8 R B + 80 ) x + 64 R B − 640 ) d x = \int_4^8 ((-9+R_B)x^2 + (72-8R_B - 8R_B + 80)x + 64R_B - 640) dx = ∫ 4 8 (( − 9 + R B ) x 2 + ( 72 − 8 R B − 8 R B + 80 ) x + 64 R B − 640 ) d x = ∫ 4 8 ( ( − 9 + R B ) x 2 + ( 152 − 16 R B ) x + 64 R B − 640 ) d x = \int_4^8 ((-9+R_B)x^2 + (152 - 16R_B)x + 64R_B - 640) dx = ∫ 4 8 (( − 9 + R B ) x 2 + ( 152 − 16 R B ) x + 64 R B − 640 ) d x = [ ( − 9 + R B ) x 3 3 + ( 152 − 16 R B ) x 2 2 + ( 64 R B − 640 ) x ] 4 8 = [\frac{(-9 + R_B)x^3}{3} + \frac{(152 - 16R_B)x^2}{2} + (64R_B - 640)x]_4^8 = [ 3 ( − 9 + R B ) x 3 + 2 ( 152 − 16 R B ) x 2 + ( 64 R B − 640 ) x ] 4 8 = [ ( − 9 + R B ) x 3 3 + ( 76 − 8 R B ) x 2 + ( 64 R B − 640 ) x ] 4 8 = [\frac{(-9 + R_B)x^3}{3} + (76 - 8R_B)x^2 + (64R_B - 640)x]_4^8 = [ 3 ( − 9 + R B ) x 3 + ( 76 − 8 R B ) x 2 + ( 64 R B − 640 ) x ] 4 8 = [ ( − 9 + R B ) 512 3 + ( 76 − 8 R B ) 64 + ( 64 R B − 640 ) 8 ] − [ ( − 9 + R B ) 64 3 + ( 76 − 8 R B ) 16 + ( 64 R B − 640 ) 4 ] = [\frac{(-9+R_B)512}{3} + (76 - 8R_B)64 + (64R_B - 640)8] - [\frac{(-9+R_B)64}{3} + (76-8R_B)16 + (64R_B - 640)4] = [ 3 ( − 9 + R B ) 512 + ( 76 − 8 R B ) 64 + ( 64 R B − 640 ) 8 ] − [ 3 ( − 9 + R B ) 64 + ( 76 − 8 R B ) 16 + ( 64 R B − 640 ) 4 ] = ( − 9 + R B ) 512 3 − ( − 9 + R B ) 64 3 + ( 76 − 8 R B ) 64 − ( 76 − 8 R B ) 16 + ( 64 R B − 640 ) 8 − ( 64 R B − 640 ) 4 = \frac{(-9+R_B)512}{3} - \frac{(-9+R_B)64}{3} + (76 - 8R_B)64 - (76 - 8R_B)16 + (64R_B - 640)8 - (64R_B - 640)4 = 3 ( − 9 + R B ) 512 − 3 ( − 9 + R B ) 64 + ( 76 − 8 R B ) 64 − ( 76 − 8 R B ) 16 + ( 64 R B − 640 ) 8 − ( 64 R B − 640 ) 4 = ( − 9 + R B ) 448 3 + ( 76 − 8 R B ) 48 + ( 64 R B − 640 ) 4 = \frac{(-9+R_B)448}{3} + (76-8R_B)48 + (64R_B - 640)4 = 3 ( − 9 + R B ) 448 + ( 76 − 8 R B ) 48 + ( 64 R B − 640 ) 4 = − 4032 + 448 R B 3 + 3648 − 384 R B + 256 R B − 2560 = \frac{-4032 + 448R_B}{3} + 3648 - 384R_B + 256R_B - 2560 = 3 − 4032 + 448 R B + 3648 − 384 R B + 256 R B − 2560 = − 4032 + 448 R B + 32544 − 1152 R B + 768 R B − 7680 3 = 20832 + 64 R B 3 = \frac{-4032 + 448R_B + 32544 - 1152R_B + 768R_B - 7680}{3} = \frac{20832 + 64 R_B}{3} = 3 − 4032 + 448 R B + 32544 − 1152 R B + 768 R B − 7680 = 3 20832 + 64 R B
− 704 3 + 64 3 R B + 20832 + 64 R B 3 = 0 -\frac{704}{3} + \frac{64}{3} R_B + \frac{20832 + 64 R_B}{3} = 0 − 3 704 + 3 64 R B + 3 20832 + 64 R B = 0 20128 + 128 R B = 0 20128 + 128 R_B = 0 20128 + 128 R B = 0 128 R B = − 20128 128R_B = -20128 128 R B = − 20128 R B = − 157.25 R_B = -157.25 R B = − 157.25 kN. This result does not seem physically possible, since all loads point downwards. We must have made an error. Let's reconsider the moments.
For 4 ≤ x ≤ 8 4 \le x \le 8 4 ≤ x ≤ 8 : M ( x ) = R A ∗ x − 10 ( x − 4 ) M(x) = R_A * x - 10(x-4) M ( x ) = R A ∗ x − 10 ( x − 4 ) . M ( x ) = ( 11 − R B 2 ) x − 10 ( x − 4 ) = ( 11 − R B 2 ) x − 10 x + 40 = ( 11 − R B − 20 2 ) x + 40 = ( − 9 − R B 2 ) x + 40 M(x) = (\frac{11-R_B}{2})x - 10(x-4) = (\frac{11-R_B}{2})x - 10x + 40 = (\frac{11-R_B-20}{2})x + 40 = (\frac{-9-R_B}{2})x + 40 M ( x ) = ( 2 11 − R B ) x − 10 ( x − 4 ) = ( 2 11 − R B ) x − 10 x + 40 = ( 2 11 − R B − 20 ) x + 40 = ( 2 − 9 − R B ) x + 40 . ∂ M ∂ R B = − x 2 \frac{\partial M}{\partial R_B} = \frac{-x}{2} ∂ R B ∂ M = 2 − x .
∫ 0 4 ( 11 − R B 2 ) x ( − x 2 ) d x + ∫ 4 8 ( − 9 − R B 2 x + 40 ) ( − x 2 ) d x = 0 \int_0^4 (\frac{11-R_B}{2})x (-\frac{x}{2}) dx + \int_4^8 (\frac{-9-R_B}{2}x + 40)(-\frac{x}{2}) dx = 0 ∫ 0 4 ( 2 11 − R B ) x ( − 2 x ) d x + ∫ 4 8 ( 2 − 9 − R B x + 40 ) ( − 2 x ) d x = 0 − 1 4 ∫ 0 4 ( 11 x 2 − R B x 2 ) d x − 1 4 ∫ 4 8 ( − 9 x 2 − R B x 2 + 80 x ) d x = 0 -\frac{1}{4}\int_0^4 (11x^2 - R_Bx^2) dx - \frac{1}{4} \int_4^8 (-9x^2 - R_Bx^2 + 80x) dx = 0 − 4 1 ∫ 0 4 ( 11 x 2 − R B x 2 ) d x − 4 1 ∫ 4 8 ( − 9 x 2 − R B x 2 + 80 x ) d x = 0 ∫ 0 4 ( 11 x 2 − R B x 2 ) d x + ∫ 4 8 ( − 9 x 2 − R B x 2 + 80 x ) d x = 0 \int_0^4 (11x^2 - R_Bx^2) dx + \int_4^8 (-9x^2 - R_Bx^2 + 80x) dx = 0 ∫ 0 4 ( 11 x 2 − R B x 2 ) d x + ∫ 4 8 ( − 9 x 2 − R B x 2 + 80 x ) d x = 0
11 x 3 3 − R B x 3 3 ∣ 0 4 = 704 3 − 64 R B 3 \frac{11x^3}{3} - \frac{R_B x^3}{3}\Big|_0^4 = \frac{704}{3} - \frac{64 R_B}{3} 3 11 x 3 − 3 R B x 3 0 4 = 3 704 − 3 64 R B − 3 x 3 − R B x 3 3 + 40 x 2 ∣ 4 8 = ( − 3 ( 512 ) − R B 512 3 + 40 ( 64 ) ) − ( − 3 ( 64 ) − R B 64 3 + 40 ( 16 ) ) -3x^3 - \frac{R_B x^3}{3} + 40x^2\Big|_4^8 = (-3(512) - \frac{R_B 512}{3} + 40(64)) - (-3(64) - \frac{R_B 64}{3} + 40(16)) − 3 x 3 − 3 R B x 3 + 40 x 2 4 8 = ( − 3 ( 512 ) − 3 R B 512 + 40 ( 64 )) − ( − 3 ( 64 ) − 3 R B 64 + 40 ( 16 )) = ( − 1536 − 512 R B 3 + 2560 ) − ( − 192 − 64 R B 3 + 640 ) = 1024 − 512 R B 3 − 448 + 64 R B 3 = 576 − 448 R B 3 = (-1536 - \frac{512 R_B}{3} + 2560) - (-192 - \frac{64R_B}{3} + 640) = 1024 - \frac{512 R_B}{3} - 448 + \frac{64 R_B}{3} = 576 - \frac{448R_B}{3} = ( − 1536 − 3 512 R B + 2560 ) − ( − 192 − 3 64 R B + 640 ) = 1024 − 3 512 R B − 448 + 3 64 R B = 576 − 3 448 R B
704 3 − 64 R B 3 + 576 − 448 R B 3 = 0 \frac{704}{3} - \frac{64R_B}{3} + 576 - \frac{448R_B}{3} = 0 3 704 − 3 64 R B + 576 − 3 448 R B = 0 704 − 64 R B + 1728 − 448 R B = 0 704 - 64R_B + 1728 - 448R_B = 0 704 − 64 R B + 1728 − 448 R B = 0 2432 − 512 R B = 0 2432 - 512 R_B = 0 2432 − 512 R B = 0 512 R B = 2432 512 R_B = 2432 512 R B = 2432 R B = 2432 512 = 4.75 k N R_B = \frac{2432}{512} = 4.75 kN R B = 512 2432 = 4.75 k N .