We are asked to determine the reaction at support B of a continuous beam ABC using Castigliano's theorem. The beam is subjected to a 10 kN vertical load at a distance of 4 m from support A and a 2 kN vertical load at a distance of 6 m from support A (4 m from support B). The lengths of the beam segments are AB = 4 m and BC = 4 m.

Applied MathematicsStructural MechanicsCastigliano's TheoremBeam AnalysisStaticsBending Moment
2025/7/9

1. Problem Description

We are asked to determine the reaction at support B of a continuous beam ABC using Castigliano's theorem. The beam is subjected to a 10 kN vertical load at a distance of 4 m from support A and a 2 kN vertical load at a distance of 6 m from support A (4 m from support B). The lengths of the beam segments are AB = 4 m and BC = 4 m.

2. Solution Steps

Let RAR_A, RBR_B, and RCR_C be the vertical reactions at supports A, B, and C, respectively.
Let xx be the distance from support A.
First, we need to find an expression for the bending moment M(x)M(x) in terms of an assumed redundant reaction. We'll consider RBR_B as the redundant reaction.
From static equilibrium:
Fy=0\sum F_y = 0:
RA+RB+RC102=0R_A + R_B + R_C - 10 - 2 = 0
RA+RB+RC=12R_A + R_B + R_C = 12
MA=0\sum M_A = 0:
RB4+RC810426=0R_B * 4 + R_C * 8 - 10 * 4 - 2 * 6 = 0
4RB+8RC=40+12=524R_B + 8R_C = 40 + 12 = 52
RB+2RC=13R_B + 2R_C = 13
From these equations, we have
RA+RC=12RBR_A + R_C = 12 - R_B
2RC=13RB2R_C = 13 - R_B
RC=13RB2R_C = \frac{13 - R_B}{2}
RA=12RB13RB2=242RB13+RB2=11RB2R_A = 12 - R_B - \frac{13 - R_B}{2} = \frac{24 - 2R_B - 13 + R_B}{2} = \frac{11 - R_B}{2}
Now, we need to find the bending moment M(x)M(x) as a function of xx.
For 0x40 \le x \le 4:
M(x)=RAx=11RB2xM(x) = R_A * x = \frac{11 - R_B}{2} * x
For 4x84 \le x \le 8:
M(x)=RAx+RB(x4)10(x4)=11RB2x+RB(x4)10(x4)M(x) = R_A * x + R_B * (x - 4) - 10 * (x-4) = \frac{11 - R_B}{2} * x + R_B * (x - 4) - 10 * (x-4)
M(x)=11xRBx+2RBx8RB20x+802=9x+RBx8RB+802M(x) = \frac{11x - R_B x + 2R_B x - 8R_B - 20x + 80}{2} = \frac{-9x + R_B x - 8R_B + 80}{2}
M(x)=(9+RB)x8RB+802M(x) = \frac{(-9 + R_B)x - 8R_B + 80}{2}
Castigliano's Theorem:
URB=MEIMRBdx=0\frac{\partial U}{\partial R_B} = \int \frac{M}{EI} \frac{\partial M}{\partial R_B} dx = 0
Since EIEI is constant, we can write:
MMRBdx=0\int M \frac{\partial M}{\partial R_B} dx = 0
For 0x40 \le x \le 4:
M(x)=11RB2xM(x) = \frac{11 - R_B}{2} * x
MRB=x2\frac{\partial M}{\partial R_B} = -\frac{x}{2}
For 4x84 \le x \le 8:
M(x)=(9+RB)x8RB+802M(x) = \frac{(-9 + R_B)x - 8R_B + 80}{2}
MRB=x82\frac{\partial M}{\partial R_B} = \frac{x - 8}{2}
0411RB2x(x2)dx+48(9+RB)x8RB+802(x82)dx=0\int_0^4 \frac{11 - R_B}{2} * x * (-\frac{x}{2}) dx + \int_4^8 \frac{(-9 + R_B)x - 8R_B + 80}{2} * (\frac{x - 8}{2}) dx = 0
1404(11x2RBx2)dx+1448((9+RB)x8RB+80)(x8)dx=0-\frac{1}{4} \int_0^4 (11x^2 - R_B x^2) dx + \frac{1}{4} \int_4^8 ((-9 + R_B)x - 8R_B + 80)(x-8) dx = 0
04(11x2RBx2)dx+48((9+RB)x8RB+80)(x8)dx=0-\int_0^4 (11x^2 - R_B x^2) dx + \int_4^8 ((-9 + R_B)x - 8R_B + 80)(x-8) dx = 0
04(11x2RBx2)dx=[11x33RBx33]04=(1164364RB3)=7043+643RB-\int_0^4 (11x^2 - R_B x^2) dx = -[\frac{11x^3}{3} - \frac{R_B x^3}{3}]_0^4 = -(\frac{11*64}{3} - \frac{64 R_B}{3}) = -\frac{704}{3} + \frac{64}{3} R_B
48((9+RB)x8RB+80)(x8)dx=48((9+RB)x28(9+RB)x8RBx+64RB+80x640)dx\int_4^8 ((-9 + R_B)x - 8R_B + 80)(x-8) dx = \int_4^8 ((-9 + R_B)x^2 - 8(-9+R_B)x - 8R_B x + 64R_B + 80x - 640) dx
=48((9+RB)x2+(728RB8RB+80)x+64RB640)dx= \int_4^8 ((-9+R_B)x^2 + (72-8R_B - 8R_B + 80)x + 64R_B - 640) dx
=48((9+RB)x2+(15216RB)x+64RB640)dx= \int_4^8 ((-9+R_B)x^2 + (152 - 16R_B)x + 64R_B - 640) dx
=[(9+RB)x33+(15216RB)x22+(64RB640)x]48= [\frac{(-9 + R_B)x^3}{3} + \frac{(152 - 16R_B)x^2}{2} + (64R_B - 640)x]_4^8
=[(9+RB)x33+(768RB)x2+(64RB640)x]48= [\frac{(-9 + R_B)x^3}{3} + (76 - 8R_B)x^2 + (64R_B - 640)x]_4^8
=[(9+RB)5123+(768RB)64+(64RB640)8][(9+RB)643+(768RB)16+(64RB640)4]= [\frac{(-9+R_B)512}{3} + (76 - 8R_B)64 + (64R_B - 640)8] - [\frac{(-9+R_B)64}{3} + (76-8R_B)16 + (64R_B - 640)4]
=(9+RB)5123(9+RB)643+(768RB)64(768RB)16+(64RB640)8(64RB640)4= \frac{(-9+R_B)512}{3} - \frac{(-9+R_B)64}{3} + (76 - 8R_B)64 - (76 - 8R_B)16 + (64R_B - 640)8 - (64R_B - 640)4
=(9+RB)4483+(768RB)48+(64RB640)4= \frac{(-9+R_B)448}{3} + (76-8R_B)48 + (64R_B - 640)4
=4032+448RB3+3648384RB+256RB2560= \frac{-4032 + 448R_B}{3} + 3648 - 384R_B + 256R_B - 2560
=4032+448RB+325441152RB+768RB76803=20832+64RB3= \frac{-4032 + 448R_B + 32544 - 1152R_B + 768R_B - 7680}{3} = \frac{20832 + 64 R_B}{3}
7043+643RB+20832+64RB3=0-\frac{704}{3} + \frac{64}{3} R_B + \frac{20832 + 64 R_B}{3} = 0
20128+128RB=020128 + 128 R_B = 0
128RB=20128128R_B = -20128
RB=157.25R_B = -157.25 kN. This result does not seem physically possible, since all loads point downwards. We must have made an error.
Let's reconsider the moments.
For 4x84 \le x \le 8:
M(x)=RAx10(x4)M(x) = R_A * x - 10(x-4).
M(x)=(11RB2)x10(x4)=(11RB2)x10x+40=(11RB202)x+40=(9RB2)x+40M(x) = (\frac{11-R_B}{2})x - 10(x-4) = (\frac{11-R_B}{2})x - 10x + 40 = (\frac{11-R_B-20}{2})x + 40 = (\frac{-9-R_B}{2})x + 40.
MRB=x2\frac{\partial M}{\partial R_B} = \frac{-x}{2}.
04(11RB2)x(x2)dx+48(9RB2x+40)(x2)dx=0\int_0^4 (\frac{11-R_B}{2})x (-\frac{x}{2}) dx + \int_4^8 (\frac{-9-R_B}{2}x + 40)(-\frac{x}{2}) dx = 0
1404(11x2RBx2)dx1448(9x2RBx2+80x)dx=0-\frac{1}{4}\int_0^4 (11x^2 - R_Bx^2) dx - \frac{1}{4} \int_4^8 (-9x^2 - R_Bx^2 + 80x) dx = 0
04(11x2RBx2)dx+48(9x2RBx2+80x)dx=0\int_0^4 (11x^2 - R_Bx^2) dx + \int_4^8 (-9x^2 - R_Bx^2 + 80x) dx = 0
11x33RBx3304=704364RB3\frac{11x^3}{3} - \frac{R_B x^3}{3}\Big|_0^4 = \frac{704}{3} - \frac{64 R_B}{3}
3x3RBx33+40x248=(3(512)RB5123+40(64))(3(64)RB643+40(16))-3x^3 - \frac{R_B x^3}{3} + 40x^2\Big|_4^8 = (-3(512) - \frac{R_B 512}{3} + 40(64)) - (-3(64) - \frac{R_B 64}{3} + 40(16))
=(1536512RB3+2560)(19264RB3+640)=1024512RB3448+64RB3=576448RB3 = (-1536 - \frac{512 R_B}{3} + 2560) - (-192 - \frac{64R_B}{3} + 640) = 1024 - \frac{512 R_B}{3} - 448 + \frac{64 R_B}{3} = 576 - \frac{448R_B}{3}
704364RB3+576448RB3=0\frac{704}{3} - \frac{64R_B}{3} + 576 - \frac{448R_B}{3} = 0
70464RB+1728448RB=0704 - 64R_B + 1728 - 448R_B = 0
2432512RB=02432 - 512 R_B = 0
512RB=2432512 R_B = 2432
RB=2432512=4.75kNR_B = \frac{2432}{512} = 4.75 kN.

3. Final Answer

The reaction at support B is 4.75 kN.

Related problems in "Applied Mathematics"

The problem asks to find the next time after 12:00 when the minute and hour hands of a clock overlap...

Clock ProblemRotational MotionAngular SpeedTime CalculationWord Problem
2025/7/27

The problem presents a flowchart that evaluates a student's answers to 40 questions. The task is to...

Flowchart AnalysisAlgorithm DesignConditional StatementsLoopsPseudocode
2025/7/27

The problem is to analyze a flowchart representing a computer program that checks multiple-choice an...

Flowchart AnalysisAlgorithm AnalysisComputer ProgrammingVariablesConditional Statements
2025/7/27

We need to calculate the Yield to Maturity (YTM) of a bond given the following information: Face Val...

FinanceBond ValuationYield to Maturity (YTM)Financial ModelingApproximation
2025/7/26

We are given a simply supported beam AB of length $L$, carrying a point load $W$ at a distance $a$ f...

Structural MechanicsBeam TheoryStrain EnergyDeflectionCastigliano's TheoremIntegration
2025/7/26

The problem asks us to determine the degree of static indeterminacy of a rigid plane frame. We need ...

Structural AnalysisStaticsIndeterminacyPlane Frame
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisBending MomentShear ForceStress CalculationEngineering Mechanics
2025/7/26

The problem asks us to show that the element stiffness matrix for a pin-jointed structure is given b...

Structural MechanicsFinite Element AnalysisStiffness MatrixLinear AlgebraEngineering
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26