The problem asks to convert binary numbers to their decimal equivalents. We are given a list of binary numbers and must find their decimal representation.

Number TheoryBinary NumbersDecimal ConversionNumber Systems
2025/3/10

1. Problem Description

The problem asks to convert binary numbers to their decimal equivalents. We are given a list of binary numbers and must find their decimal representation.

2. Solution Steps

To convert a binary number to a decimal number, we multiply each digit of the binary number by 22 raised to the power of its position (starting from 0 on the rightmost digit) and then sum the results.
Here are the solutions for each given binary number:

1. Binary = $1001$

Decimal = (1×23)+(0×22)+(0×21)+(1×20)=8+0+0+1=9(1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 8 + 0 + 0 + 1 = 9

2. Binary = $100000$

Decimal = (1×25)+(0×24)+(0×23)+(0×22)+(0×21)+(0×20)=32+0+0+0+0+0=32(1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 32 + 0 + 0 + 0 + 0 + 0 = 32

3. Binary = $1100101101$

Decimal = (1×29)+(1×28)+(0×27)+(0×26)+(1×25)+(0×24)+(1×23)+(1×22)+(0×21)+(1×20)=512+256+0+0+32+0+8+4+0+1=813(1 \times 2^9) + (1 \times 2^8) + (0 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 512 + 256 + 0 + 0 + 32 + 0 + 8 + 4 + 0 + 1 = 813

4. Binary = $100001000$

Decimal = (1×28)+(0×27)+(0×26)+(0×25)+(0×24)+(1×23)+(0×22)+(0×21)+(0×20)=256+0+0+0+0+8+0+0+0=264(1 \times 2^8) + (0 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 256 + 0 + 0 + 0 + 0 + 8 + 0 + 0 + 0 = 264

5. Binary = $10101001$

Decimal = (1×27)+(0×26)+(1×25)+(0×24)+(1×23)+(0×22)+(0×21)+(1×20)=128+0+32+0+8+0+0+1=169(1 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 128 + 0 + 32 + 0 + 8 + 0 + 0 + 1 = 169

6. Binary = $1010000100$

Decimal = (1×29)+(0×28)+(1×27)+(0×26)+(0×25)+(0×24)+(0×23)+(1×22)+(0×21)+(0×20)=512+0+128+0+0+0+0+4+0+0=644(1 \times 2^9) + (0 \times 2^8) + (1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 512 + 0 + 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0 = 644

7. Binary = $1011010111$

Decimal = (1×29)+(0×28)+(1×27)+(1×26)+(0×25)+(1×24)+(0×23)+(1×22)+(1×21)+(1×20)=512+0+128+64+0+16+0+4+2+1=727(1 \times 2^9) + (0 \times 2^8) + (1 \times 2^7) + (1 \times 2^6) + (0 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 512 + 0 + 128 + 64 + 0 + 16 + 0 + 4 + 2 + 1 = 727

8. Binary = $1010101111$

Decimal = (1×29)+(0×28)+(1×27)+(0×26)+(1×25)+(0×24)+(1×23)+(1×22)+(1×21)+(1×20)=512+0+128+0+32+0+8+4+2+1=687(1 \times 2^9) + (0 \times 2^8) + (1 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 512 + 0 + 128 + 0 + 32 + 0 + 8 + 4 + 2 + 1 = 687

9. Binary = $1101111110100$

Decimal = (1×212)+(1×211)+(0×210)+(1×29)+(1×28)+(1×27)+(1×26)+(1×25)+(1×24)+(0×23)+(1×22)+(0×21)+(0×20)=4096+2048+0+512+256+128+64+32+16+0+4+0+0=7156(1 \times 2^{12}) + (1 \times 2^{11}) + (0 \times 2^{10}) + (1 \times 2^9) + (1 \times 2^8) + (1 \times 2^7) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 4096 + 2048 + 0 + 512 + 256 + 128 + 64 + 32 + 16 + 0 + 4 + 0 + 0 = 7156
1

0. Binary = $110110101111$

Decimal = (1×211)+(1×210)+(0×29)+(1×28)+(1×27)+(0×26)+(1×25)+(0×24)+(1×23)+(1×22)+(1×21)+(1×20)=2048+1024+0+256+128+0+32+0+8+4+2+1=3503(1 \times 2^{11}) + (1 \times 2^{10}) + (0 \times 2^9) + (1 \times 2^8) + (1 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 2048 + 1024 + 0 + 256 + 128 + 0 + 32 + 0 + 8 + 4 + 2 + 1 = 3503

3. Final Answer

1. 9

2. 32

3. 813

4. 264

5. 169

6. 644

7. 727

8. 687

9. 7156

1

0. 3503

Related problems in "Number Theory"

Question 9: Find the binary, hexadecimal, or octal number that is equivalent to the decimal value 16...

Number Base ConversionsBinaryHexadecimalOctalDecimal
2025/4/8

The problem asks us to fill in a 2x2 table with numbers less than 100. The rows are "a square number...

Number PropertiesSquare NumbersEven and Odd Numbers
2025/4/4

We have four digit cards: 7, 5, 2, and 1. We need to choose two cards each time to make two-digit nu...

DivisibilityFactorsMultiplesSquare Numbers
2025/4/4

We are given that a positive integer $N$ is represented as $abc$ in base 5 and $cba$ in base 9. We w...

Number BasesBase ConversionDiophantine Equations
2025/3/31

The problem asks to find the hexadecimal equivalent of $X+Y$, where $X = 10010_2$ and $Y = 1111_2$ a...

Number SystemsBinaryHexadecimalBase ConversionArithmetic Operations
2025/3/31

The image presents multiple-choice questions. We will solve questions 34, 35, 36, and 37. Question 3...

Modular ArithmeticModulo Operation
2025/3/31

We are asked to find which of the given numbers cannot be the base of the number $12012$.

Number BasesBase Conversion
2025/3/31

The problem asks us to classify given numbers into different sets of numbers: - N: Natural numbers -...

Number SetsReal NumbersRational NumbersIrrational NumbersIntegersNatural Numbers
2025/3/30

We are given the number 243, which is not a perfect square. We need to find the smallest natural num...

Perfect SquaresPrime FactorizationInteger Properties
2025/3/30

The problem asks us to find the smallest natural number that we need to divide 675 by to obtain a pe...

Prime FactorizationPerfect SquaresDivisibility
2025/3/30