Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of $f$.

AnalysisFunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

1. Problem Description

Given the function f(x)=x2+3x+1f(x) = \frac{x^2+3}{x+1}, we need to:

1. Determine the domain of definition of $f$.

2. Calculate the limits of $f$ at the boundaries of its domain.

3. Show that for all $x \in ]-\infty, -1[ \cup ]-1, +\infty[$, $f'(x) = \frac{x^2+2x-3}{(x+1)^2}$.

4. Study the sense of variation of $f$ and draw its variation table.

5. Determine the real numbers $a$, $b$, and $c$ such that $f(x) = ax + b + \frac{c}{x+1}$.

6. Given that $a=1$, $b=-1$ and $c=4$, show that the line $(\Delta)$ with equation $y=x-1$ is an oblique asymptote to the curve $(C)$ at $-\infty$ and $+\infty$.

7. Draw the curve $(C)$ and the line $(\Delta)$ in the same coordinate system.

8. Let $g$ be the restriction of $f$ to the interval $I = ]-1, +\infty[$ such that $g(x)=f(-x)$.

9. Without studying the function $g$, draw its variation table.

1

0. Draw the curve $(C')$ of $g$ in the same coordinate system as $(C)$.

2. Solution Steps

1. Domain of definition:

The function f(x)=x2+3x+1f(x) = \frac{x^2+3}{x+1} is defined for all xx such that the denominator is not zero. Thus, x+10x+1 \ne 0, which means x1x \ne -1.
Therefore, the domain of definition is Df=R{1}=],1[]1,+[D_f = \mathbb{R} \setminus \{-1\} = ]-\infty, -1[ \cup ]-1, +\infty[.

2. Limits at the boundaries of the domain:

limxf(x)=limxx2+3x+1=limxx2x=limxx=\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2+3}{x+1} = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to -\infty} x = -\infty
limx+f(x)=limx+x2+3x+1=limx+x2x=limx+x=+\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2+3}{x+1} = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty
limx1f(x)=limx1x2+3x+1=(1)2+31+1=40=\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{x^2+3}{x+1} = \frac{(-1)^2+3}{-1^-+1} = \frac{4}{0^-} = -\infty
limx1+f(x)=limx1+x2+3x+1=(1)2+31++1=40+=+\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{x^2+3}{x+1} = \frac{(-1)^2+3}{-1^++1} = \frac{4}{0^+} = +\infty

3. Derivative:

f(x)=x2+3x+1f(x) = \frac{x^2+3}{x+1}
f(x)=(2x)(x+1)(x2+3)(1)(x+1)2=2x2+2xx23(x+1)2=x2+2x3(x+1)2f'(x) = \frac{(2x)(x+1) - (x^2+3)(1)}{(x+1)^2} = \frac{2x^2 + 2x - x^2 - 3}{(x+1)^2} = \frac{x^2+2x-3}{(x+1)^2}

4. Sense of variation:

We study the sign of f(x)=x2+2x3(x+1)2f'(x) = \frac{x^2+2x-3}{(x+1)^2}.
Since (x+1)2>0(x+1)^2 > 0 for x1x \ne -1, the sign of f(x)f'(x) depends on the sign of x2+2x3x^2+2x-3.
x2+2x3=0x=2±44(3)2=2±162=2±42x^2+2x-3 = 0 \Rightarrow x = \frac{-2 \pm \sqrt{4 - 4(-3)}}{2} = \frac{-2 \pm \sqrt{16}}{2} = \frac{-2 \pm 4}{2}. Thus x1=1x_1 = 1 and x2=3x_2 = -3.
The quadratic x2+2x3x^2+2x-3 is positive for x],3[]1,+[x \in ]-\infty, -3[ \cup ]1, +\infty[ and negative for x]3,1[x \in ]-3, 1[.
So f(x)>0f'(x) > 0 for x],3[]1,+[x \in ]-\infty, -3[ \cup ]1, +\infty[ and f(x)<0f'(x) < 0 for x]3,1[]1,1[x \in ]-3, -1[ \cup ]-1, 1[.
Therefore, ff is increasing on ],3]]-\infty, -3] and [1,+[[1, +\infty[, and decreasing on [3,1[[-3, -1[ and ]1,1]]-1, 1].

5. Decomposition:

f(x)=x2+3x+1=x21+4x+1=(x1)(x+1)+4x+1=x1+4x+1f(x) = \frac{x^2+3}{x+1} = \frac{x^2-1+4}{x+1} = \frac{(x-1)(x+1)+4}{x+1} = x-1 + \frac{4}{x+1}.
So a=1,b=1,c=4a=1, b=-1, c=4.

6. Oblique asymptote:

f(x)(x1)=4x+1f(x) - (x-1) = \frac{4}{x+1}.
limx±[f(x)(x1)]=limx±4x+1=0\lim_{x \to \pm \infty} [f(x) - (x-1)] = \lim_{x \to \pm \infty} \frac{4}{x+1} = 0.
Thus, the line y=x1y=x-1 is an oblique asymptote to the curve (C)(C) at -\infty and ++\infty.

7. Drawing the curve and the line.

8. Restriction $g(x)=f(-x)$:

g(x)=f(x)=(x)2+3x+1=x2+31xg(x) = f(-x) = \frac{(-x)^2+3}{-x+1} = \frac{x^2+3}{1-x}, with x]1,+[x \in ]-1, +\infty[. Thus, x],1[-x \in ]-\infty, 1[.
However, the domain is ]1,+[]-1, +\infty[. Since g(x)=f(x)g(x) = f(-x), then g(x)=f(x)g'(x) = -f'(-x).
If x]1,+[x \in ]-1, +\infty[, then x],1[-x \in ]-\infty, 1[.
When f(x)>0f'(-x) > 0, x],3[]1,+[-x \in ]-\infty, -3[ \cup ]1, +\infty[, which implies x],1[]3,+[x \in ]-\infty, -1[ \cup ]3, +\infty[.
Since the domain is ]1,+[]-1, +\infty[, x-x should be in ],1[]-\infty, 1[, thus g(x)=f(x)g'(x) = - f'(-x) should be examined when the given interval is ]1,+[]-1, +\infty[.
Also, g(x)=f(x)=(x)2+2(x)3(x+1)2=x22x3(1x)2g'(x)= -f'(-x) = - \frac{(-x)^2+2(-x)-3}{(-x+1)^2}= - \frac{x^2-2x-3}{(1-x)^2}.
The sign is determined by the numerator now. The roots are x=3,x=1x=3, x=-1. ]1,3[]-1, 3[ is decreasing and ]3,+[]3, +\infty[ is increasing.
Therefore, gg is increasing when x]1,3[x \in ]-1, 3[ and decreasing when x]3,+[x \in ]3, +\infty[.

9. Variation table of $g$:

g(x)g(x) increases on ]1,3[]-1, 3[ and decreases on ]3,+[]3, +\infty[. g(3)=122=6g(3) = \frac{12}{-2}=-6.
limx1+g(x)=42=2\lim_{x \to -1^+} g(x) = \frac{4}{2} = 2
limx+g(x)=limx+x2+31x=\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{x^2+3}{1-x} = -\infty
1

0. Drawing the curve $(C')$.

3. Final Answer

1. $D_f = ]-\infty, -1[ \cup ]-1, +\infty[$

2. $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -1^-} f(x) = -\infty$, $\lim_{x \to -1^+} f(x) = +\infty$

3. $f'(x) = \frac{x^2+2x-3}{(x+1)^2}$

4. $f$ is increasing on $]-\infty, -3]$ and $[1, +\infty[$, and decreasing on $[-3, -1[$ and $]-1, 1]$.

5. $a=1, b=-1, c=4$

6. $y=x-1$ is an oblique asymptote to the curve $(C)$ at $-\infty$ and $+\infty$.

7. Graph of the curve and line.

8. $g(x)=f(-x) = \frac{x^2+3}{1-x}$,

9. $g$ is increasing when $x \in ]-1, 3[$ and decreasing when $x \in ]3, +\infty[$.

1

0. Graph of the curve $(C')$.

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1