We are asked to evaluate the infinite sum $\sum_{k=2}^\infty \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right)$. This looks like a telescoping series.

AnalysisInfinite SeriesTelescoping SeriesLimits
2025/3/6

1. Problem Description

We are asked to evaluate the infinite sum k=2(3(k1)23k2)\sum_{k=2}^\infty \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right). This looks like a telescoping series.

2. Solution Steps

Let's write out the first few terms to see the pattern:
When k=2k=2, we have 3(21)2322=312322=334\frac{3}{(2-1)^2} - \frac{3}{2^2} = \frac{3}{1^2} - \frac{3}{2^2} = 3 - \frac{3}{4}.
When k=3k=3, we have 3(31)2332=322332=3439\frac{3}{(3-1)^2} - \frac{3}{3^2} = \frac{3}{2^2} - \frac{3}{3^2} = \frac{3}{4} - \frac{3}{9}.
When k=4k=4, we have 3(41)2342=332342=39316\frac{3}{(4-1)^2} - \frac{3}{4^2} = \frac{3}{3^2} - \frac{3}{4^2} = \frac{3}{9} - \frac{3}{16}.
When k=5k=5, we have 3(51)2352=342352=316325\frac{3}{(5-1)^2} - \frac{3}{5^2} = \frac{3}{4^2} - \frac{3}{5^2} = \frac{3}{16} - \frac{3}{25}.
Let SnS_n be the partial sum of the first nn terms. Then
Sn=k=2n+1(3(k1)23k2)=(312322)+(322332)+(332342)++(3n23(n+1)2)S_n = \sum_{k=2}^{n+1} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right) = \left( \frac{3}{1^2} - \frac{3}{2^2} \right) + \left( \frac{3}{2^2} - \frac{3}{3^2} \right) + \left( \frac{3}{3^2} - \frac{3}{4^2} \right) + \cdots + \left( \frac{3}{n^2} - \frac{3}{(n+1)^2} \right).
We see that this is a telescoping sum, where consecutive terms cancel each other out.
Thus, Sn=3123(n+1)2=33(n+1)2S_n = \frac{3}{1^2} - \frac{3}{(n+1)^2} = 3 - \frac{3}{(n+1)^2}.
Now we need to find the limit as nn \to \infty.
k=2(3(k1)23k2)=limnSn=limn(33(n+1)2)=30=3\sum_{k=2}^\infty \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right) = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( 3 - \frac{3}{(n+1)^2} \right) = 3 - 0 = 3.

3. Final Answer

33

Related problems in "Analysis"

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29