We are asked to evaluate the infinite sum $\sum_{k=2}^\infty \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right)$. This looks like a telescoping series.

AnalysisInfinite SeriesTelescoping SeriesLimits
2025/3/6

1. Problem Description

We are asked to evaluate the infinite sum k=2(3(k1)23k2)\sum_{k=2}^\infty \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right). This looks like a telescoping series.

2. Solution Steps

Let's write out the first few terms to see the pattern:
When k=2k=2, we have 3(21)2322=312322=334\frac{3}{(2-1)^2} - \frac{3}{2^2} = \frac{3}{1^2} - \frac{3}{2^2} = 3 - \frac{3}{4}.
When k=3k=3, we have 3(31)2332=322332=3439\frac{3}{(3-1)^2} - \frac{3}{3^2} = \frac{3}{2^2} - \frac{3}{3^2} = \frac{3}{4} - \frac{3}{9}.
When k=4k=4, we have 3(41)2342=332342=39316\frac{3}{(4-1)^2} - \frac{3}{4^2} = \frac{3}{3^2} - \frac{3}{4^2} = \frac{3}{9} - \frac{3}{16}.
When k=5k=5, we have 3(51)2352=342352=316325\frac{3}{(5-1)^2} - \frac{3}{5^2} = \frac{3}{4^2} - \frac{3}{5^2} = \frac{3}{16} - \frac{3}{25}.
Let SnS_n be the partial sum of the first nn terms. Then
Sn=k=2n+1(3(k1)23k2)=(312322)+(322332)+(332342)++(3n23(n+1)2)S_n = \sum_{k=2}^{n+1} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right) = \left( \frac{3}{1^2} - \frac{3}{2^2} \right) + \left( \frac{3}{2^2} - \frac{3}{3^2} \right) + \left( \frac{3}{3^2} - \frac{3}{4^2} \right) + \cdots + \left( \frac{3}{n^2} - \frac{3}{(n+1)^2} \right).
We see that this is a telescoping sum, where consecutive terms cancel each other out.
Thus, Sn=3123(n+1)2=33(n+1)2S_n = \frac{3}{1^2} - \frac{3}{(n+1)^2} = 3 - \frac{3}{(n+1)^2}.
Now we need to find the limit as nn \to \infty.
k=2(3(k1)23k2)=limnSn=limn(33(n+1)2)=30=3\sum_{k=2}^\infty \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right) = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( 3 - \frac{3}{(n+1)^2} \right) = 3 - 0 = 3.

3. Final Answer

33

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1