Let's write out the first few terms to see the pattern:
When k=2, we have (2−1)23−223=123−223=3−43. When k=3, we have (3−1)23−323=223−323=43−93. When k=4, we have (4−1)23−423=323−423=93−163. When k=5, we have (5−1)23−523=423−523=163−253. Let Sn be the partial sum of the first n terms. Then Sn=∑k=2n+1((k−1)23−k23)=(123−223)+(223−323)+(323−423)+⋯+(n23−(n+1)23). We see that this is a telescoping sum, where consecutive terms cancel each other out.
Thus, Sn=123−(n+1)23=3−(n+1)23. Now we need to find the limit as n→∞. ∑k=2∞((k−1)23−k23)=limn→∞Sn=limn→∞(3−(n+1)23)=3−0=3.