Given a triangle ABC, we are asked to solve three problems related to a point M in the plane. 1) Prove that there exists a unique point D such that $\vec{DA} + \vec{DB} - \vec{DC} = \vec{0}$. 2) Prove that for any point M in the plane, $\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}$. 3) Determine the set of points M in the plane such that: a) $\vec{MA} + \vec{MB} - \vec{MC}$ is collinear with $\vec{AM} - \vec{BM}$. b) $||\vec{MA} + \vec{MB} - \vec{MC}|| = ||\vec{MB}||$. c) $||\vec{MA} + \vec{MB} - \vec{MC}|| = 1$.

GeometryVectorsGeometric ProofParallelogramCollinearityPerpendicular BisectorCircle
2025/4/5

1. Problem Description

Given a triangle ABC, we are asked to solve three problems related to a point M in the plane.
1) Prove that there exists a unique point D such that DA+DBDC=0\vec{DA} + \vec{DB} - \vec{DC} = \vec{0}.
2) Prove that for any point M in the plane, MA+MBMC=MD\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}.
3) Determine the set of points M in the plane such that:
a) MA+MBMC\vec{MA} + \vec{MB} - \vec{MC} is collinear with AMBM\vec{AM} - \vec{BM}.
b) MA+MBMC=MB||\vec{MA} + \vec{MB} - \vec{MC}|| = ||\vec{MB}||.
c) MA+MBMC=1||\vec{MA} + \vec{MB} - \vec{MC}|| = 1.

2. Solution Steps

1) Existence and uniqueness of D such that DA+DBDC=0\vec{DA} + \vec{DB} - \vec{DC} = \vec{0}.
DA+DBDC=0\vec{DA} + \vec{DB} - \vec{DC} = \vec{0}
DA+DB+CD=0\vec{DA} + \vec{DB} + \vec{CD} = \vec{0}
CD=ADBD\vec{CD} = \vec{AD} - \vec{BD}
DC=BDAD\vec{DC} = \vec{BD} - \vec{AD}
AD=AB+BD\vec{AD} = \vec{AB} + \vec{BD}
BDAD=BD(AB+BD)=AB\vec{BD} - \vec{AD} = \vec{BD} - (\vec{AB} + \vec{BD}) = -\vec{AB}
Therefore, DC=AB\vec{DC} = -\vec{AB}, which means CD=AB\vec{CD} = \vec{AB}.
This means that vector CD\vec{CD} is equal to vector AB\vec{AB}, thus the quadrilateral ABDC is a parallelogram. Since A, B, and C are fixed points, D is uniquely defined as the fourth vertex of parallelogram ABDC.
The intersection of the diagonals AC and BD is the midpoint.
2) For any point M in the plane, prove that MA+MBMC=MD\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}.
We know that DA+DBDC=0\vec{DA} + \vec{DB} - \vec{DC} = \vec{0}.
Using Chasles' relation,
MA=MD+DA\vec{MA} = \vec{MD} + \vec{DA}
MB=MD+DB\vec{MB} = \vec{MD} + \vec{DB}
MC=MD+DC\vec{MC} = \vec{MD} + \vec{DC}
Therefore,
MA+MBMC=(MD+DA)+(MD+DB)(MD+DC)\vec{MA} + \vec{MB} - \vec{MC} = (\vec{MD} + \vec{DA}) + (\vec{MD} + \vec{DB}) - (\vec{MD} + \vec{DC})
MA+MBMC=MD+DA+MD+DBMDDC\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD} + \vec{DA} + \vec{MD} + \vec{DB} - \vec{MD} - \vec{DC}
MA+MBMC=MD+DA+DBDC\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD} + \vec{DA} + \vec{DB} - \vec{DC}
MA+MBMC=MD+(DA+DBDC)\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD} + (\vec{DA} + \vec{DB} - \vec{DC})
Since DA+DBDC=0\vec{DA} + \vec{DB} - \vec{DC} = \vec{0},
MA+MBMC=MD\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}
3)
a) MA+MBMC\vec{MA} + \vec{MB} - \vec{MC} is collinear with AMBM\vec{AM} - \vec{BM}.
Since MA+MBMC=MD\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}, we have MD\vec{MD} is collinear with AMBM\vec{AM} - \vec{BM}.
AMBM=(AD+DM)(BD+DM)=ADBD=AD+DB\vec{AM} - \vec{BM} = (\vec{AD} + \vec{DM}) - (\vec{BD} + \vec{DM}) = \vec{AD} - \vec{BD} = \vec{AD} + \vec{DB}
Since DA+DBDC=0\vec{DA} + \vec{DB} - \vec{DC} = \vec{0}, we have DB=DA+DC\vec{DB} = -\vec{DA} + \vec{DC}
So, ADBD=AD(DA+DC)=AD+DADC=2DADC\vec{AD} - \vec{BD} = \vec{AD} - (-\vec{DA} + \vec{DC}) = \vec{AD} + \vec{DA} - \vec{DC} = 2\vec{DA} - \vec{DC}
We have MD\vec{MD} is collinear with 2DADC2\vec{DA} - \vec{DC}. This means that M, D, and a point E such that DE=2DADC\vec{DE} = 2\vec{DA} - \vec{DC} are collinear. Since D, A and C are fixed, the point E is also fixed.
Therefore, M lies on the line (DE).
b) MA+MBMC=MB||\vec{MA} + \vec{MB} - \vec{MC}|| = ||\vec{MB}||
Since MA+MBMC=MD\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}, we have MD=MB||\vec{MD}|| = ||\vec{MB}||.
This means that the distance from M to D is the same as the distance from M to B. Therefore, M lies on the perpendicular bisector of segment BD.
c) MA+MBMC=1||\vec{MA} + \vec{MB} - \vec{MC}|| = 1
Since MA+MBMC=MD\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}, we have MD=1||\vec{MD}|| = 1.
This means that the distance from M to D is

1. Therefore, M lies on the circle centered at D with radius

1.

3. Final Answer

1) D is uniquely defined as the fourth vertex of parallelogram ABDC.
2) MA+MBMC=MD\vec{MA} + \vec{MB} - \vec{MC} = \vec{MD}
3)
a) M lies on the line (DE), where E is a fixed point such that DE=2DADC\vec{DE} = 2\vec{DA} - \vec{DC}.
b) M lies on the perpendicular bisector of segment BD.
c) M lies on the circle centered at D with radius
1.

Related problems in "Geometry"

Point P moves on the circle $(x-6)^2 + y^2 = 9$. Find the locus of point Q which divides the line se...

LocusCirclesCoordinate Geometry
2025/6/12

We are given three points $A(5, 2)$, $B(-1, 0)$, and $C(3, -2)$. (1) We need to find the equation of...

CircleCircumcircleEquation of a CircleCoordinate GeometryCircumcenterRadius
2025/6/12

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9