We need to evaluate the infinite sum $\sum_{k=2}^{\infty} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right)$.

AnalysisInfinite SeriesTelescoping SeriesLimitSummation
2025/3/6

1. Problem Description

We need to evaluate the infinite sum k=2(3(k1)23k2)\sum_{k=2}^{\infty} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right).

2. Solution Steps

This is a telescoping series. Let's write out the first few terms:
k=2:3(21)2322=3134k=2: \frac{3}{(2-1)^2} - \frac{3}{2^2} = \frac{3}{1} - \frac{3}{4}
k=3:3(31)2332=3439k=3: \frac{3}{(3-1)^2} - \frac{3}{3^2} = \frac{3}{4} - \frac{3}{9}
k=4:3(41)2342=39316k=4: \frac{3}{(4-1)^2} - \frac{3}{4^2} = \frac{3}{9} - \frac{3}{16}
k=5:3(51)2352=316325k=5: \frac{3}{(5-1)^2} - \frac{3}{5^2} = \frac{3}{16} - \frac{3}{25}
We can see that the terms are cancelling each other out.
Let Sn=k=2n(3(k1)23k2)S_n = \sum_{k=2}^{n} \left( \frac{3}{(k-1)^2} - \frac{3}{k^2} \right). Then
Sn=(312322)+(322332)+(332342)+...+(3(n1)23n2)S_n = \left( \frac{3}{1^2} - \frac{3}{2^2} \right) + \left( \frac{3}{2^2} - \frac{3}{3^2} \right) + \left( \frac{3}{3^2} - \frac{3}{4^2} \right) + ... + \left( \frac{3}{(n-1)^2} - \frac{3}{n^2} \right)
Sn=3123n2=33n2S_n = \frac{3}{1^2} - \frac{3}{n^2} = 3 - \frac{3}{n^2}
As nn approaches infinity, 3n2\frac{3}{n^2} approaches

0. Therefore, $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( 3 - \frac{3}{n^2} \right) = 3 - 0 = 3$.

3. Final Answer

33

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1