This is a telescoping series. Let's write out the first few terms:
k=2:(2−1)23−223=13−43 k=3:(3−1)23−323=43−93 k=4:(4−1)23−423=93−163 k=5:(5−1)23−523=163−253 We can see that the terms are cancelling each other out.
Let Sn=∑k=2n((k−1)23−k23). Then Sn=(123−223)+(223−323)+(323−423)+...+((n−1)23−n23) Sn=123−n23=3−n23 As n approaches infinity, n23 approaches