We need to find the limit of the given functions in 2.1 (a), (b), (c), (d), and (e).

AnalysisLimitsCalculusTrigonometric LimitsPiecewise Functions
2025/6/6

1. Problem Description

We need to find the limit of the given functions in 2.1 (a), (b), (c), (d), and (e).

2. Solution Steps

(a) limxx2+axx2+βx\lim_{x\to\infty} \sqrt{x^2 + ax} - \sqrt{x^2 + \beta x}
limx(x2+axx2+βx)x2+ax+x2+βxx2+ax+x2+βx\lim_{x\to\infty} (\sqrt{x^2 + ax} - \sqrt{x^2 + \beta x}) \cdot \frac{\sqrt{x^2 + ax} + \sqrt{x^2 + \beta x}}{\sqrt{x^2 + ax} + \sqrt{x^2 + \beta x}}
=limx(x2+ax)(x2+βx)x2+ax+x2+βx= \lim_{x\to\infty} \frac{(x^2 + ax) - (x^2 + \beta x)}{\sqrt{x^2 + ax} + \sqrt{x^2 + \beta x}}
=limx(aβ)xx2(1+ax)+x2(1+βx)= \lim_{x\to\infty} \frac{(a - \beta)x}{\sqrt{x^2(1 + \frac{a}{x})} + \sqrt{x^2(1 + \frac{\beta}{x})}}
=limx(aβ)xx1+ax+x1+βx= \lim_{x\to\infty} \frac{(a - \beta)x}{x\sqrt{1 + \frac{a}{x}} + x\sqrt{1 + \frac{\beta}{x}}}
=limx(aβ)1+ax+1+βx= \lim_{x\to\infty} \frac{(a - \beta)}{\sqrt{1 + \frac{a}{x}} + \sqrt{1 + \frac{\beta}{x}}}
=aβ1+0+1+0= \frac{a - \beta}{\sqrt{1 + 0} + \sqrt{1 + 0}}
=aβ1+1= \frac{a - \beta}{1 + 1}
=aβ2= \frac{a - \beta}{2}
(b) limx0{arctan(1x),x>0π4[2cosx],x0\lim_{x\to 0} \begin{cases} \arctan(\frac{1}{x}), & x > 0 \\ \frac{\pi}{4}[2\cos x], & x \le 0 \end{cases}
For x>0x > 0, limx0+arctan(1x)=π2\lim_{x\to 0^+} \arctan(\frac{1}{x}) = \frac{\pi}{2}.
For x0x \le 0, limx0π4[2cosx]=π4[2cos(0)]=π4[2]=π42=π2\lim_{x\to 0^-} \frac{\pi}{4} [2\cos x] = \frac{\pi}{4} [2\cos(0)] = \frac{\pi}{4}[2] = \frac{\pi}{4} \cdot 2 = \frac{\pi}{2}
Since both limits agree, the limit exists and equals π2\frac{\pi}{2}.
(c) limxx2sin(1x)\lim_{x\to\infty} x^2 \sin(\frac{1}{x})
Let y=1xy = \frac{1}{x}. Then as xx \to \infty, y0y \to 0.
limxx2sin(1x)=limy01y2sin(y)=limy0sin(y)y2=limy0sin(y)y1y\lim_{x\to\infty} x^2 \sin(\frac{1}{x}) = \lim_{y\to 0} \frac{1}{y^2} \sin(y) = \lim_{y\to 0} \frac{\sin(y)}{y^2} = \lim_{y\to 0} \frac{\sin(y)}{y} \cdot \frac{1}{y}
Since limy0sin(y)y=1\lim_{y\to 0} \frac{\sin(y)}{y} = 1, the limit becomes limy01y\lim_{y\to 0} \frac{1}{y}, which does not exist.
To be precise:
limxx2sin(1x)\lim_{x\to\infty} x^2 \sin(\frac{1}{x})
Let t=1/xt = 1/x. Then, as xx \to \infty, t0+t \to 0^+.
limxx2sin(1/x)=limt0+(1/t2)sin(t)=limt0+sin(t)t2\lim_{x\to\infty} x^2 \sin(1/x) = \lim_{t\to 0^+} (1/t^2) \sin(t) = \lim_{t\to 0^+} \frac{\sin(t)}{t^2}
Since limt0+sin(t)/t=1\lim_{t\to 0^+} \sin(t) / t = 1, we have limt0+1t=+\lim_{t\to 0^+} \frac{1}{t} = +\infty.
So the limit does not exist.
(d) limxaa+2x3x3a+x2x\lim_{x\to a} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}}
limxaa+2x3x3a+x2xa+2x+3xa+2x+3x3a+x+2x3a+x+2x\lim_{x\to a} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \cdot \frac{\sqrt{a+2x} + \sqrt{3x}}{\sqrt{a+2x} + \sqrt{3x}} \cdot \frac{\sqrt{3a+x} + 2\sqrt{x}}{\sqrt{3a+x} + 2\sqrt{x}}
=limxa(a+2x3x)(3a+x+2x)(3a+x4x)(a+2x+3x)= \lim_{x\to a} \frac{(a+2x - 3x)(\sqrt{3a+x} + 2\sqrt{x})}{(3a+x - 4x)(\sqrt{a+2x} + \sqrt{3x})}
=limxa(ax)(3a+x+2x)(3a3x)(a+2x+3x)= \lim_{x\to a} \frac{(a-x)(\sqrt{3a+x} + 2\sqrt{x})}{(3a-3x)(\sqrt{a+2x} + \sqrt{3x})}
=limxa(ax)(3a+x+2x)3(ax)(a+2x+3x)= \lim_{x\to a} \frac{(a-x)(\sqrt{3a+x} + 2\sqrt{x})}{3(a-x)(\sqrt{a+2x} + \sqrt{3x})}
=limxa(3a+x+2x)3(a+2x+3x)= \lim_{x\to a} \frac{(\sqrt{3a+x} + 2\sqrt{x})}{3(\sqrt{a+2x} + \sqrt{3x})}
=3a+a+2a3(a+2a+3a)= \frac{\sqrt{3a+a} + 2\sqrt{a}}{3(\sqrt{a+2a} + \sqrt{3a})}
=4a+2a3(3a+3a)= \frac{\sqrt{4a} + 2\sqrt{a}}{3(\sqrt{3a} + \sqrt{3a})}
=2a+2a3(23a)= \frac{2\sqrt{a} + 2\sqrt{a}}{3(2\sqrt{3a})}
=4a63a=233=239= \frac{4\sqrt{a}}{6\sqrt{3a}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}
(e) limx131[3x4]\lim_{x\to \frac{1}{3}} \frac{1}{[3x-4]}
As x13x\to \frac{1}{3}, we have 3x43(13)4=14=33x-4\to 3(\frac{1}{3})-4 = 1-4=-3.
Therefore, [3x4][3]=3[3x-4]\to [-3]=-3.
limx131[3x4]=13=13\lim_{x\to \frac{1}{3}} \frac{1}{[3x-4]}=\frac{1}{-3}=-\frac{1}{3}

3. Final Answer

(a) aβ2\frac{a-\beta}{2}
(b) π2\frac{\pi}{2}
(c) Does not exist
(d) 239\frac{2\sqrt{3}}{9}
(e) 13-\frac{1}{3}

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7