The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 \cos(2x) \, dx$ using integration by parts twice. Second, we are given $I = \int_0^{\pi/2} x^2 \cos^2(x) \, dx$ and $J = \int_0^{\pi/2} x^2 \sin^2(x) \, dx$. We are asked to calculate $I+J$ and $I-J$ and then find $I$ and $J$.

AnalysisIntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

1. Problem Description

The problem consists of two parts.
First, we are asked to evaluate the integral 0π/2x2cos(2x)dx\int_0^{\pi/2} x^2 \cos(2x) \, dx using integration by parts twice.
Second, we are given I=0π/2x2cos2(x)dxI = \int_0^{\pi/2} x^2 \cos^2(x) \, dx and J=0π/2x2sin2(x)dxJ = \int_0^{\pi/2} x^2 \sin^2(x) \, dx. We are asked to calculate I+JI+J and IJI-J and then find II and JJ.

2. Solution Steps

Part 1: Evaluate 0π/2x2cos(2x)dx\int_0^{\pi/2} x^2 \cos(2x) \, dx.
We use integration by parts, udv=uvvdu\int u \, dv = uv - \int v \, du.
Let u=x2u = x^2 and dv=cos(2x)dxdv = \cos(2x) \, dx. Then du=2xdxdu = 2x \, dx and v=12sin(2x)v = \frac{1}{2} \sin(2x).
So,
0π/2x2cos(2x)dx=[x212sin(2x)]0π/20π/212sin(2x)2xdx\int_0^{\pi/2} x^2 \cos(2x) \, dx = \left[ x^2 \cdot \frac{1}{2} \sin(2x) \right]_0^{\pi/2} - \int_0^{\pi/2} \frac{1}{2} \sin(2x) \cdot 2x \, dx
=[12x2sin(2x)]0π/20π/2xsin(2x)dx= \left[ \frac{1}{2} x^2 \sin(2x) \right]_0^{\pi/2} - \int_0^{\pi/2} x \sin(2x) \, dx
=12((π2)2sin(π)02sin(0))0π/2xsin(2x)dx= \frac{1}{2} \left( (\frac{\pi}{2})^2 \sin(\pi) - 0^2 \sin(0) \right) - \int_0^{\pi/2} x \sin(2x) \, dx
=00π/2xsin(2x)dx= 0 - \int_0^{\pi/2} x \sin(2x) \, dx
=0π/2xsin(2x)dx= - \int_0^{\pi/2} x \sin(2x) \, dx
We use integration by parts again.
Let u=xu = x and dv=sin(2x)dxdv = \sin(2x) \, dx. Then du=dxdu = dx and v=12cos(2x)v = -\frac{1}{2} \cos(2x).
So,
0π/2xsin(2x)dx=([x(12cos(2x))]0π/20π/2(12cos(2x))dx)-\int_0^{\pi/2} x \sin(2x) \, dx = - \left( \left[ x \cdot (-\frac{1}{2} \cos(2x)) \right]_0^{\pi/2} - \int_0^{\pi/2} (-\frac{1}{2} \cos(2x)) \, dx \right)
=([12xcos(2x)]0π/2+120π/2cos(2x)dx)= - \left( \left[ -\frac{1}{2} x \cos(2x) \right]_0^{\pi/2} + \frac{1}{2} \int_0^{\pi/2} \cos(2x) \, dx \right)
=(12π2cos(π)(120cos(0))+12[12sin(2x)]0π/2)= - \left( -\frac{1}{2} \frac{\pi}{2} \cos(\pi) - (-\frac{1}{2} \cdot 0 \cdot \cos(0)) + \frac{1}{2} \left[ \frac{1}{2} \sin(2x) \right]_0^{\pi/2} \right)
=(π4(1)0+14(sin(π)sin(0)))= - \left( -\frac{\pi}{4} (-1) - 0 + \frac{1}{4} (\sin(\pi) - \sin(0)) \right)
=(π4+14(00))= - \left( \frac{\pi}{4} + \frac{1}{4} (0 - 0) \right)
=π4= -\frac{\pi}{4}
Part 2: Evaluate I+JI+J and IJI-J and find II and JJ.
I=0π/2x2cos2(x)dxI = \int_0^{\pi/2} x^2 \cos^2(x) \, dx
J=0π/2x2sin2(x)dxJ = \int_0^{\pi/2} x^2 \sin^2(x) \, dx
I+J=0π/2x2(cos2(x)+sin2(x))dx=0π/2x2dx=[13x3]0π/2=13(π2)30=π324I+J = \int_0^{\pi/2} x^2 (\cos^2(x) + \sin^2(x)) \, dx = \int_0^{\pi/2} x^2 \, dx = \left[ \frac{1}{3} x^3 \right]_0^{\pi/2} = \frac{1}{3} (\frac{\pi}{2})^3 - 0 = \frac{\pi^3}{24}
IJ=0π/2x2(cos2(x)sin2(x))dx=0π/2x2cos(2x)dx=π4I-J = \int_0^{\pi/2} x^2 (\cos^2(x) - \sin^2(x)) \, dx = \int_0^{\pi/2} x^2 \cos(2x) \, dx = -\frac{\pi}{4} (from Part 1)
Now we have:
I+J=π324I+J = \frac{\pi^3}{24}
IJ=π4I-J = -\frac{\pi}{4}
Adding the two equations:
2I=π324π4=π36π242I = \frac{\pi^3}{24} - \frac{\pi}{4} = \frac{\pi^3 - 6\pi}{24}
I=π36π48I = \frac{\pi^3 - 6\pi}{48}
Subtracting the two equations:
2J=π324+π4=π3+6π242J = \frac{\pi^3}{24} + \frac{\pi}{4} = \frac{\pi^3 + 6\pi}{24}
J=π3+6π48J = \frac{\pi^3 + 6\pi}{48}

3. Final Answer

0π/2x2cos(2x)dx=π4\int_0^{\pi/2} x^2 \cos(2x) \, dx = -\frac{\pi}{4}
I+J=π324I+J = \frac{\pi^3}{24}
IJ=π4I-J = -\frac{\pi}{4}
I=π36π48I = \frac{\pi^3 - 6\pi}{48}
J=π3+6π48J = \frac{\pi^3 + 6\pi}{48}

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7

We are given the expression $a_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}}$ and we need to analyze it. Th...

LimitsL'Hopital's RuleLogarithms
2025/6/6