Part 1: Evaluate ∫0π/2x2cos(2x)dx. We use integration by parts, ∫udv=uv−∫vdu. Let u=x2 and dv=cos(2x)dx. Then du=2xdx and v=21sin(2x). So,
∫0π/2x2cos(2x)dx=[x2⋅21sin(2x)]0π/2−∫0π/221sin(2x)⋅2xdx =[21x2sin(2x)]0π/2−∫0π/2xsin(2x)dx =21((2π)2sin(π)−02sin(0))−∫0π/2xsin(2x)dx =0−∫0π/2xsin(2x)dx =−∫0π/2xsin(2x)dx We use integration by parts again.
Let u=x and dv=sin(2x)dx. Then du=dx and v=−21cos(2x). So,
−∫0π/2xsin(2x)dx=−([x⋅(−21cos(2x))]0π/2−∫0π/2(−21cos(2x))dx) =−([−21xcos(2x)]0π/2+21∫0π/2cos(2x)dx) =−(−212πcos(π)−(−21⋅0⋅cos(0))+21[21sin(2x)]0π/2) =−(−4π(−1)−0+41(sin(π)−sin(0))) =−(4π+41(0−0)) =−4π Part 2: Evaluate I+J and I−J and find I and J. I=∫0π/2x2cos2(x)dx J=∫0π/2x2sin2(x)dx I+J=∫0π/2x2(cos2(x)+sin2(x))dx=∫0π/2x2dx=[31x3]0π/2=31(2π)3−0=24π3 I−J=∫0π/2x2(cos2(x)−sin2(x))dx=∫0π/2x2cos(2x)dx=−4π (from Part 1) Now we have:
I+J=24π3 I−J=−4π Adding the two equations:
2I=24π3−4π=24π3−6π I=48π3−6π Subtracting the two equations:
2J=24π3+4π=24π3+6π J=48π3+6π