First, we can split the integral into three separate integrals:
I=∫x1dx+∫x24dx−∫sin2x5dx We can rewrite the second term as:
I=∫x1dx+4∫x−2dx−5∫sin2x1dx We know that:
∫x1dx=ln∣x∣+C1 ∫xndx=n+1xn+1+C for n=−1. So, ∫x−2dx=−2+1x−2+1+C2=−1x−1+C2=−x1+C2 Also, we know that ∫sin2x1dx=∫csc2xdx=−cotx+C3 Substituting these back into our integral:
I=ln∣x∣+4(−x1)−5(−cotx)+C I=ln∣x∣−x4+5cotx+C