The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sqrt{x+4} - 3}{x}$. The second limit is $\lim_{x\to \frac{\pi}{2}} \left(x \tan x - \frac{\pi}{2\cos x}\right)$.

AnalysisLimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

1. Problem Description

The problem asks us to evaluate two limits. The first limit is
limx0x+1+x+43x\lim_{x\to 0} \frac{\sqrt{x+1} + \sqrt{x+4} - 3}{x}.
The second limit is
limxπ2(xtanxπ2cosx)\lim_{x\to \frac{\pi}{2}} \left(x \tan x - \frac{\pi}{2\cos x}\right).

2. Solution Steps

First, let's evaluate the first limit:
limx0x+1+x+43x\lim_{x\to 0} \frac{\sqrt{x+1} + \sqrt{x+4} - 3}{x}.
We can rewrite the expression as:
limx0(x+11)+(x+42)x\lim_{x\to 0} \frac{(\sqrt{x+1}-1) + (\sqrt{x+4}-2)}{x}.
Now, we multiply by the conjugates:
limx0(x+11)(x+1+1)x(x+1+1)+(x+42)(x+4+2)x(x+4+2)\lim_{x\to 0} \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1)} + \frac{(\sqrt{x+4}-2)(\sqrt{x+4}+2)}{x(\sqrt{x+4}+2)}
=limx0x+11x(x+1+1)+x+44x(x+4+2)= \lim_{x\to 0} \frac{x+1-1}{x(\sqrt{x+1}+1)} + \frac{x+4-4}{x(\sqrt{x+4}+2)}
=limx0xx(x+1+1)+xx(x+4+2)= \lim_{x\to 0} \frac{x}{x(\sqrt{x+1}+1)} + \frac{x}{x(\sqrt{x+4}+2)}
=limx01x+1+1+1x+4+2= \lim_{x\to 0} \frac{1}{\sqrt{x+1}+1} + \frac{1}{\sqrt{x+4}+2}
=10+1+1+10+4+2=11+1+12+2=12+14=24+14=34= \frac{1}{\sqrt{0+1}+1} + \frac{1}{\sqrt{0+4}+2} = \frac{1}{1+1} + \frac{1}{2+2} = \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4}.
Next, let's evaluate the second limit:
limxπ2(xtanxπ2cosx)\lim_{x\to \frac{\pi}{2}} \left(x \tan x - \frac{\pi}{2\cos x}\right)
=limxπ2(xsinxcosxπ2cosx)= \lim_{x\to \frac{\pi}{2}} \left(\frac{x \sin x}{\cos x} - \frac{\pi}{2\cos x}\right)
=limxπ22xsinxπ2cosx= \lim_{x\to \frac{\pi}{2}} \frac{2x \sin x - \pi}{2\cos x}.
Let x=π2+hx = \frac{\pi}{2} + h. As xπ2x \to \frac{\pi}{2}, h0h \to 0.
=limh02(π2+h)sin(π2+h)π2cos(π2+h)= \lim_{h\to 0} \frac{2(\frac{\pi}{2}+h) \sin(\frac{\pi}{2}+h) - \pi}{2\cos(\frac{\pi}{2}+h)}
=limh02(π2+h)cos(h)π2sin(h)= \lim_{h\to 0} \frac{2(\frac{\pi}{2}+h) \cos(h) - \pi}{-2\sin(h)}
=limh0πcosh+2hcoshπ2sinh= \lim_{h\to 0} \frac{\pi\cos h + 2h\cos h - \pi}{-2\sin h}
=limh0π(cosh1)+2hcosh2sinh= \lim_{h\to 0} \frac{\pi(\cos h - 1) + 2h\cos h}{-2\sin h}
=limh0π(cosh1)2sinh+limh02hcosh2sinh= \lim_{h\to 0} \frac{\pi(\cos h - 1)}{-2\sin h} + \lim_{h\to 0} \frac{2h\cos h}{-2\sin h}
=limh0π(cosh1)2sinhlimh0hcoshsinh= \lim_{h\to 0} \frac{\pi(\cos h - 1)}{-2\sin h} - \lim_{h\to 0} \frac{h\cos h}{\sin h}
=limh0π(cosh1)2sinhlimh0hsinhcosh= \lim_{h\to 0} \frac{\pi(\cos h - 1)}{-2\sin h} - \lim_{h\to 0} \frac{h}{\sin h}\cos h
Using L'Hopital's rule on the first term:
limh0π(sinh)2cosh=π(0)2(1)=0\lim_{h\to 0} \frac{\pi(-\sin h)}{-2\cos h} = \frac{\pi(0)}{-2(1)} = 0.
The second term is:
limh0hsinhlimh0cosh=11=1- \lim_{h\to 0} \frac{h}{\sin h} \cdot \lim_{h\to 0} \cos h = -1 \cdot 1 = -1.
Therefore, the limit is 01=10 - 1 = -1.

3. Final Answer

limx0x+1+x+43x=34\lim_{x\to 0} \frac{\sqrt{x+1} + \sqrt{x+4} - 3}{x} = \frac{3}{4}
limxπ2(xtanxπ2cosx)=1\lim_{x\to \frac{\pi}{2}} \left(x \tan x - \frac{\pi}{2\cos x}\right) = -1

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7

We are given the expression $a_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}}$ and we need to analyze it. Th...

LimitsL'Hopital's RuleLogarithms
2025/6/6