Let Sn be the partial sum: Sn=∑k=2n(k1−k−11) Expanding the sum gives:
Sn=(21−11)+(31−21)+(41−31)+...+(n1−n−11) Notice that this is a telescoping sum, where most terms cancel out. We have:
Sn=−11+(21−21)+(31−31)+...+(n−11−n−11)+n1 Sn=−1+n1 Now, we take the limit as n approaches infinity to find the value of the infinite sum: ∑k=2∞(k1−k−11)=limn→∞Sn=limn→∞(−1+n1) Since limn→∞n1=0, we have: limn→∞(−1+n1)=−1+0=−1