The problem asks us to find the derivatives of six different functions.

AnalysisCalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

1. Problem Description

The problem asks us to find the derivatives of six different functions.

2. Solution Steps

We will differentiate each function separately.

1. $y = x^3 \sin(2x)$

We use the product rule: (uv)=uv+uv(uv)' = u'v + uv'.
Let u=x3u = x^3 and v=sin(2x)v = \sin(2x).
Then u=3x2u' = 3x^2 and v=2cos(2x)v' = 2\cos(2x).
y=(x3)sin(2x)+x3(sin(2x))y' = (x^3)'\sin(2x) + x^3(\sin(2x))'
y=3x2sin(2x)+x3(2cos(2x))y' = 3x^2\sin(2x) + x^3(2\cos(2x))
y=3x2sin(2x)+2x3cos(2x)y' = 3x^2\sin(2x) + 2x^3\cos(2x)

2. $y = 3x^3 - x\cos(3x)$

We use the difference rule and product rule.
y=(3x3)(xcos(3x))y' = (3x^3)' - (x\cos(3x))'
y=9x2[(x)cos(3x)+x(cos(3x))]y' = 9x^2 - [(x)'\cos(3x) + x(\cos(3x))']
y=9x2[cos(3x)+x(3sin(3x))]y' = 9x^2 - [\cos(3x) + x(-3\sin(3x))]
y=9x2cos(3x)+3xsin(3x)y' = 9x^2 - \cos(3x) + 3x\sin(3x)

3. $y = -x\cos(4-3x^2)$

We use the product rule.
y=(x)cos(43x2)x[cos(43x2)]y' = -(x)'\cos(4-3x^2) - x[\cos(4-3x^2)]'
y=cos(43x2)x[sin(43x2)(6x)]y' = -\cos(4-3x^2) - x[-\sin(4-3x^2)(-6x)]
y=cos(43x2)6x2sin(43x2)y' = -\cos(4-3x^2) - 6x^2\sin(4-3x^2)

4. $f(x) = \frac{\sin^2(3x)}{x^2}$

We use the quotient rule: (uv)=uvuvv2(\frac{u}{v})' = \frac{u'v - uv'}{v^2}.
Let u=sin2(3x)u = \sin^2(3x) and v=x2v = x^2.
Then u=2sin(3x)cos(3x)(3)=6sin(3x)cos(3x)=3sin(6x)u' = 2\sin(3x)\cos(3x)(3) = 6\sin(3x)\cos(3x) = 3\sin(6x) and v=2xv' = 2x.
f(x)=(3sin(6x))(x2)(sin2(3x))(2x)(x2)2f'(x) = \frac{(3\sin(6x))(x^2) - (\sin^2(3x))(2x)}{(x^2)^2}
f(x)=3x2sin(6x)2xsin2(3x)x4f'(x) = \frac{3x^2\sin(6x) - 2x\sin^2(3x)}{x^4}
f(x)=3xsin(6x)2sin2(3x)x3f'(x) = \frac{3x\sin(6x) - 2\sin^2(3x)}{x^3}

5. $f(x) = \frac{\tan(2x)}{x^2-1}$

We use the quotient rule: (uv)=uvuvv2(\frac{u}{v})' = \frac{u'v - uv'}{v^2}.
Let u=tan(2x)u = \tan(2x) and v=x21v = x^2 - 1.
Then u=2sec2(2x)u' = 2\sec^2(2x) and v=2xv' = 2x.
f(x)=(2sec2(2x))(x21)(tan(2x))(2x)(x21)2f'(x) = \frac{(2\sec^2(2x))(x^2-1) - (\tan(2x))(2x)}{(x^2-1)^2}
f(x)=2(x21)sec2(2x)2xtan(2x)(x21)2f'(x) = \frac{2(x^2-1)\sec^2(2x) - 2x\tan(2x)}{(x^2-1)^2}

6. $f(x) = \cos(\sin^2(3x))$

We use the chain rule.
f(x)=sin(sin2(3x))(2sin(3x)cos(3x)3)f'(x) = -\sin(\sin^2(3x)) \cdot (2\sin(3x) \cdot \cos(3x) \cdot 3)
f(x)=6sin(sin2(3x))sin(3x)cos(3x)f'(x) = -6\sin(\sin^2(3x))\sin(3x)\cos(3x)
f(x)=3sin(sin2(3x))sin(6x)f'(x) = -3\sin(\sin^2(3x))\sin(6x)

3. Final Answer

1. $y' = 3x^2\sin(2x) + 2x^3\cos(2x)$

2. $y' = 9x^2 - \cos(3x) + 3x\sin(3x)$

3. $y' = -\cos(4-3x^2) - 6x^2\sin(4-3x^2)$

4. $f'(x) = \frac{3x\sin(6x) - 2\sin^2(3x)}{x^3}$

5. $f'(x) = \frac{2(x^2-1)\sec^2(2x) - 2x\tan(2x)}{(x^2-1)^2}$

6. $f'(x) = -3\sin(\sin^2(3x))\sin(6x)$

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7

We are given the expression $a_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}}$ and we need to analyze it. Th...

LimitsL'Hopital's RuleLogarithms
2025/6/6